
Artificial Neural Networks for Modeling Partial 
Differential Equations Solution: Application to 

MicroSystems’ Simulation. 

Efrain Jaime Ang1, Bruno Jammes2  

1.- Universidad Autonoma de Tamaulipas, Mexico 
ejefrain@laas,fr 

2.- Laboratoire d’Analyse et d’Architecture des Systèmes, France 
jammes@laas.fr 

Abstract. This document presents a method to analytically approach the  
solution of partial differential equations (PDE) with a Feed-Forward Neural 
Network (FFNN). Such a solution should allow to introduce PDE into electrical 
or system simulators. Virtual design of Micro-Electro-Mechanical Systems 
(MEMS) would be the principal application. In this paper, the expression of the 
PDE solut ion is the sum of two terms. One satisfies the initial and/or boundary 
conditions. The other one includes a special FFNN, which implements a 
separated variable structure. The parameters of FFNN are adjusted so that the 
approximation will satisfy the equation all over its domain of validity. The 
criterion used to realize this task is the integral of the squared approximation 
error all over the domain of validity. This method is applied to a steady-state 
heat transfer problem. For this application, performances of our solution are 
compared with those of a finite elements method solution. 

1.- Introduction. 

The current trends of technologies and markets lead engineers to developed more 
and more complex systems, and in the same time to decrease conception time.  The 
only way to meet these requirements, is the virtual design. This method is currently 
developed for microsystems design. However, the complexity of phenomena to take 
into account limits the development of such a method in this domain. In fact,  partial 
differential equations (PDE) are often used to describe Microsystems, more 
particularly Micro-Electro-Mechanical Systems (MEMS) behaviour. Resolution of 
such equations requires specific software tools and resources of calculations are not 
compatible with overall simulations of systems. Moreover, current commercial tools 
for multi-domain system simulation, only support algebraic-differential equations. 
This problem is generally circumvented by using dedicated tools to solve PDE (most 
of the time such tools use finite elements methods (FEM)[10], then transferring a data 
base or a behavioural model [1,2,7] (polynomial interpolation, neural network, etc.) to 
the system simulator.  



In this article, we propose to directly approach the solution of PDE with a neural 
network, without preliminary numerical integration. The parameters of the neural 
network are adjusted so that the approximation will satisfy the equation all over its 
domain of validity.  We could define the error of approximation at any point of I as 
the error introduced by the substitution of variables by their approximations inside the 
equation. In this case parameters are adjusted so that they will minimize this error at 
any point of I. By this way, the resolution of PDE becomes a non linear optimisation 
problem. 

The approximation proposed in this paper combines the structure of solution 
proposed by Lagaris [9] and the FFNN structure proposed by Liu[3,4,5]. The Lagaris’ 
structure intrinsically satisfies boundary conditions, what simplifies the expression of 
the optimisation problem. The Liu’s FFNN has a separated variable structure. This 
architecture was inspired by the method of separation of variables sometimes used to 
solve PDE. The objective function used to adjust the FFNN parameters is the integral 
of the squared approximation errors all over the domain of validity of the equation. 
Combination of the separated variable structure and the integration of error should 
simplify the optimisation problem resolution. 

This paper is organised as follows : Section 2 describes the method, the structure 
of the neural network and the criterion used to identify its parameters. Section 3 
presents an application of our method to a steady-state heat transfer problem. In 
section 4, we compare our results with a numerical solution obtained with a FEM. 
Finally, we conclude and propose directions for future research. 

2.- Description of the Method. 

Let us consider a variable V(x,y) defined on a domain I(x,y) and solution of a partial 
differential equation : 
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Furthermore, V(x,y) should satisfy constraints at each boundary of domain I: 
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In [9], Lagaris propose to approach the solution of such system of equations by the 

following expression : 
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In this equation, A(x, y) is a function that satisfies all the boundary conditions. It 

does not contain adjustable parameters. In an other hand, the function F(x,y) takes the 
zero value on each boundary. This function restricts the influence of the neural 
network ,RNN, inside the domain of validity of the equation. 
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The solution proposed by Lagaris intrinsically satisfies the boundary conditions, 

so, RNN parameters identification procedure should minimize approximation error at 
any point of I: 
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The solution proposed by Liu in [3,4,5] doesn’t intrinsically satisfy the boundary 
conditions. RNN parameters should be adjusted in order to minimize the 
approximation error at any point of I and the boundary conditions. This leads to a 
more complex optimisation problem. Nevertheless, we will see later that the structure 
of Neural Network and the goal function proposed by Liu could simplify the 
optimisation procedure. 
 

The structure proposed by Liu is inspired by the variable separation method 
sometimes used to solve PDE. Each variable, or input, have its own units, with 
hyperbolic tangent activating function, in the first hidden layer.  
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The structure of the second hidden layer is original. Each unit of this layer receives 
the information from one hidden unit of each variable, and calculates the product of 
these values. So, in case of a two-variables equation, the expression of a second 
hidden layer unit is : 
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The output layer is more conventional. It sums all the second hidden layer outputs. 

At the end, the neural network output expression is: 
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oyoyiyiyoxoxixix b,w,b,w,b,w,b,w  are the parameters (weights) of the neural 

network. 
 
Liu also proposes to replace the sum of approximation errors, at some judiciously 

selected points of I, by a space integration. This allows to execute the optimisation 
procedure without validation tests (particularly if we use a variable step-size 
integration algorithm), and to benefit from the separate variables structure of RNN  to 
reduce number of calculations in the optimisation procedure, if the dimension of the 
problem is higher than 1. So, the parameters of  RNN should minimise : 
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3.- Application of the Method. 

To illustrate our method, we choose to solve a steady-state heat transfer problem.  We 
have selected such a problem because it is typical of phenomena that MEMS’ 
designers would introduce into system simulators.  The characteristics of  our problem 
are:   

 

Domain I(x ,y) x = [ 0,1 ] cm, y = [ 0,0.6 ] cm. 

Thermal conductivity coef. K 1.0*10 -3 Wcm -1 O C –1 

Uniform heat power W 1.0  W cm –3 

 
If k is constant, the heat transfer is described by following equation:   
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We selected Dirichlet boundary conditions: 
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The solution of this problem is approached by:   
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Thus, the goal function the parameters of RNN  should minimize is: 
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4.- Results. 

The neural network approximation presented in this section uses 10 units in the 
first hidden layer. The analytical solution of this problem is not known.  So we 
supposed that the exact solution  of our problem could be provided by a FEM with a 
very small grid (100 x100 nodes). We verified that precision of  this numerical 
integration is higher than 10-5. 

The following figure (Fig. 1) compares the neural network approximation and 
the exact solution .  Figure 2 gives the difference between theses solutions. We notice 
that the maximum error value of the neural network approximation is order of 0.0026. 

Figure 3 presents the RNN contribution in the solution. 

In order to compare the volume, this means the number of required parameters, 
of the finite element method solution and the neural network approximation, we 
looked for a numerical solution that provides the same precision that the neural 
network approximation. We met this condition with a 12-by-12 nodes grid. Accuracy 
of this solution is presented in fig. 4. We can see the maximum amplitude of the error 
is close to 0.0026. In spite of the distribution of the error inside the domain hugely 
differs from the one obtained with the neural network, we consider the precision of 
both these solutions are equivalent. In this case, we can conclude that the number of 
parameter of the numerical solution is more or less 3 times as many as the neural 
network approximation : 40 parameters for the FFNN and 144 nodes for the FEM 
solution. 

 



 
Fig. 1.  The Exact Solution and the Neural Network approximation. 

 Fig. 2.  Accuracy of Neural Network approximation. 

 



      

 
Fig.3.  RNN contribution in the solution.  

 
Fig. 4.  Accuracy of the 12-by-12 nodes FEM solution. 



5.-Conclusions and Future Research. 

The approximation of PDE solution proposed in this paper combines the 
structure of solution proposed by Lagaris, and the FFNN structure and the goal 
function proposed by Liu. In brief, we have associated a structure of solution that 
explicitly satisfies the boundary conditions with a new goal function that takes into 
account the approximation error all over the domain of validity of the equation, and a 
neural network architecture that simplifies the resolution of the optimisation problem.  

 The example presented in this paper shows that the neural network approximation 
requires, for a given precision, less parameters than the node number of an FEM 
solution. It is important also to notice that the approximation of PDE solution 
proposed in this paper is analytical. This means it can directly be exploited at any 
point of its domain of validity, contrary to FEM solutions, which requires 
interpolations between nodes. 

 
The ability of the solution proposed here to solve the steady-state heat transfer 

problem, let us to think this is the good approach for introducing PDE in system 
simulators .  

 
The future researches of this work will be in two direction : 

- We need an efficient algorithm to solve the optimisation problem. We have 
implemented several algorithms : Levenberg-Marquardt, Broyden-Fletcher-Goldfard-
Shanno and Powell  (one-dimension research) [6,11,12], but we were never satisfied : 
they are either too slow (Powell) or too sensitive to local minimum.   

 - We need to validate this method on more complex surfaces or equations. 
 

References.  
 
1. Meade A.  and A. Fernandez , Solution of no-linear ordinary differential equations 
by feed-forward neural networks, Math. Comput. Mod, Vol. 20, No. 9, pp 19-
44.1994.  
 
 2.  Meade A. and A. Fernandez, The numerical solution of linear ordinary differential 
equations by FFNN. Math. Comput. Mod, Vol. 19, No. 12, pp   1-25. 1994.  

3.  Boan Liu and Bruno Jammes, Solving Ordinary Differential Equations by Neural 
Networks , Proceeding of 13 th European Simulation Multi-conference Modelling and 
Simulation: A Tool for the Next Millennium. June 1-4, 1999, Warsaw, Poland. 

4. Boan Liu, Analytical Approximation of the Solution of Ordinary and Partial 
Derivative Equations with Artificial Neural Networks, Rapport LAAS/CNRS No. 
00623, 6 April 2000. 

5. Boan Liu, Xin Zhou and Jammes Bruno, Solving Ordinary Differential Equations 
by Neural Networks: Application to Steady-state Heat Transfer Problem, 8th 
International Conference On Neural Information Processing (ICONIP-2001), 
pp.1069-1074,Shanghai China, Nov. 14-18,2001. 



      

 
 

 
6.  Eric Walter, Luc Pronzato, Identification de Modèles Paramétriques à Partir de 
Données Expérimentales , Masson, Edition  1994. 
 
7. Freeman J., Skapura D., Neural Networks,Algorithms, Applications and 
Programming Techniques. Addison-Wesley Publishing Company. 1992. 
 
8.  George F Carrier, Carl E. Pearson, Partial Differential Equations theory and 
Technique, Academic Press, Second Edition, 1998. 
 
9.  Issac Lagaris, Aristidis Likas and Dimitrios Fotiadis, Artificial Neural Networks 
for Solving Ordinary and Partial Differential Equations, IEEE Transactions on Neural 
Networks, Vol. 9, No. 5, September 1998. 
 
10.  J.N. Reddy, An Introduction to the Finite Element Method, Mc Graw Hill, 
Second Edition 1993. 
 
11.  J. F. Bonnans,J.C.Gilbert,C.Lemarechal, C. Sagastizabal, Optimisation 
Numerique Aspects Theoriques et Pratiques, Springer-Verlag, 1997. 
 
12.  S.S. Rao, Optimization Theory and Applications, Wiley Eastern Limited, Second 
Edition 1985. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Title : 
Artificial Neural Networks for Modeling Partial Differential Equations Solution: 

Application to MicroSystems’ Simulation. 
Authors: 
Efrain Jaime Ang. 
4,impasse de Champlain 31520. 
Ramonville St. Agne France. 
Tel. 05.62.33.62.62 
ejefrain@laas.fr 
 
Bruno Jammes 
7 Avenue du Colonel Roche 
 31077 Cedex 4 
Toulouse, France. 
Tel. 05.61.33.69.91 
jammes@laas.fr 
 
Abstract. This document presents a method to analytically approach the  solution 

of partial differential equations (PDE) with a Feed-Forward Neural Network (FFNN). 
Such a solution should allow to introduce PDE into electrical or system simulators. 
Virtual design of Micro-Electro-Mechanical Systems (MEMS) would be the principal 
application. In this paper, the expression of the PDE solution is the sum of two terms. 
One satisfies the initial and/or boundary conditions. The other one includes a special 
FFNN, which implements a separated variable structure. The parameters of FFNN are 
adjusted so that the approximation will satisfy the equation all over its domain of 
validity. The criterion used to realize this task is the integral of the squared 
approximation error all over the domain of validity. This method is applied to a 
steady -state heat transfer problem. For this application, performances of our solution 
are compared with those of a finite elements method solution. 

Index Terms.- Partial differential equations, system simulators, Feed-Forward 
Neural Network, Micro-Electro-Mechanical Systems, separation of variable method. 

 Topic:  
1.- Artificial Neural Model. 
2.-soft-computing. 
3.-Optimization. 
 
PAPER TRACK 


