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Abstract. In this paper we present a procedure to estimate camera
lens distortion using a set of tuples of collinear points of known cross-
ratio. The method computes the center of distortion and two correction
parameters, which are equivalent to modeling the first radial and decen-
tering distortion coefficients. It is based on the projective invariance of
the cross-ratio of four collinear points. Using this invariant, we compute
the center of lens distortion as the intersection of a set of conics. Experi-
mental results show how the system degrades in the presence of noise in
in the input data and how the estimation error affects the correction of
the distorted points.

1 Introduction

Most computer vision models used nowadays assume that images are acquired
with a pinhole camera. This camera model establishes a linear relation between
the projective coordinates of points in the scene and their projection on the im-
age. Thanks to this linearity, the geometrical relations between multiple images
become tractable. However, as a result of several type of imperfections in the
design and assembly of lenses in the optical system, cameras normally used in
computer vision and robotics never behave as perfect pinholes. So, they are com-
monly modeled to be the composition of a non-linear lens distortion model and a
linear projective (pinhole) camera model. Normally, these models are estimated
separately in a two step process. First the image is preprocessed to estimate
and eliminate lens distortion and, in a second step, multiple view geometry is
computed. This paper deals with the estimation of the non-linear lens distortion
model.

In the classical calibration techniques used in photogrammetry, lens distor-
tion is estimated along with the linear camera projection model parameters by
bundle adjusting a set of 3D to 2D correspondences obtained from the images
of an object of known structure. This approach, known as “stellar” calibration,
was also used by Tsai [11] and Lenz and Tsai [5], who proposed the radial align-
ment constraint to decompose the camera model into linear and non linear parts,
which were estimated separately. Within this same approach, Weng [12] uses an
iterative minimization scheme in which lens distortion and camera projection
parameters are fixed in turn and jointly estimated. More recently Heikkild [4]
introduces a procedure to obtain unbiased estimates of the location of calibration
control points and forward and backward mapping models to compute a min-
imum variance estimate of camera parameters. The problem common to these



techniques which jointly minimize all camera parameters is that the strong cou-
pling that exists between projective parameters and lens distortion parameters
produces biased and unstable estimates [8,12].

The second group of methods, called “non-metric,” rely on projective con-
straints between images or between an image and the scene. A camera with lens
distortion cannot be considered a perfect projective device and, in consequence,
certain projective constraints are not fully satisfied. These methods estimate lens
distortion independently of the camera projective parameters by searching for
the distortion parameters which make the undistorted image satisfy the selected
projective constraint. Different projective constraints have been used in the lit-
erature. “Plumb-line” methods are based on the fact that, under perspective
projection, straight lines in space project to straight lines in the image. With
this constraint at least one image of a set of straight lines is needed to recover the
image distortion parameters. Although Ahmed and Farag [1] present a closed-
form solution to the distortion coefficients, most other plumb-line methods are
based on iterative minimization procedures that search for the lens distortion pa-
rameters that straighten the lines [2,8,10]. Other non-metric methods are based
on iteratively minimizing a cost function based on projective constraints between
two images (epipolar geometry) [13] or three images (trilinear relations) [7]. In [3]
closed-form solutions for one term of radial lens distortion and epipolar geome-
try (fundamental matrix) is obtained from a set of correspondences between two
images.

The work most related to the estimation method presented in this paper
is [6]. In this work G. Q. Wei and Song de Ma present procedure that iteratively
searches for the lens distortion parameters that keep invariant the cross-ratio be-
tween sets of four points in space and their projection on the image. This method
is half-way between the stellar and non-metric methods as it uses knowledge of
the structure of the scene and the invariance of a projective constraint between
an image and the scene.

In this paper we present a procedure to estimate camera lens distortion using
the image of a calibration grid from which we know the cross-ratio of a set of
4-tuples of collinear points. Our method can be seen as an extension of the work
in [6], as it is also based on the projective invariance of the cross-ratio. We go one
step further and using some classic results from Projective Geometry we derive
geometric constraints based on conics to find the center of lens distortion.

2 Camera model

Let P(X,Y, Z) be a point in the scene, p(i,¥) be the ideal undistorted projection
of that point, and p(u,v) be the the actual (distorted) projection of that point
onto the camera image plane. The pin-hole model projectively relates a scene



point and its ideal projection through
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where A # 0, f is the camera focal length, and R and ¢ are respectively a 3 x 3
rotation matrix and a translation vector representing the relative position of
scene and camera reference systems.

The following expression introduces lens distortion in the image formation
model

= u + 6y (u,v) (1)
= U+6U(U,U), (2)
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where d,, d, are non-linear functions that model the displacement caused by lens
distortion.

In this paper we will consider radial and decentering distortion. Radial dis-
tortion is caused by imperfect lens shape and results in different magnification
scales for different imaging angles. It causes points to radially spread or crowd
together around the distortion center. It can be modeled by the following ex-
pression

87 (uyv) = u(l + k1 (u? +v?) + Ka(u? +0%)3 +..)) (3)
87 (u,v) = v(1 + k1 (u® + v?) + Ko (u® +0?)3 +..)). (4)

Decentering distortion is caused by the lack of orthogonality between the
lens components and the image detector with respect to the optical axis. It has
both radial and tangential components, which can be analytically described by
the following expression

8% (u,v) = P1(3u? 4+ v?) + 2Pouv + . ..
8% (u,v) = 2P1uv + Po(3u® + v?) + ...

In our camera model model we will take into account the first term of ra-
dial distortion and we will consider that the camera principal point is different
from the image distortion center, (ig,jo). By doing this we are also implicitly
considering one term of the decentering distortion, see [9] for a proof.

Finally, the digitization process that transforms image plane coordinates to
pixel coordinates can be modeled by the following affine model

i=vd; +T (5)
j=wud;" +7jo, (6)

where d,, and d, are respectively the horizontal and vertical size of an image
pixel.



3 Proposed Method

Let P;i—1..4 be four known collinear points in the scene and let p;;—;..4 be
their distorted projection onto the image plane. Ideally, under a perfect pinhole
camera model, these points would project to p;;—1..4, which lie on a straight
line.

The pencil of points P;,i = 1...4 on the 3D line L and the pencil of ideally
projected points p;,4 = 1...4 on the 2D line L are related through a perspec-
tivity whose center is the camera optical center. Also, points p; ;=1...4, and the
lines joining these points with the center of distortion, op;;_; 4, form another
perspective mapping whose center is the center of distortion (see Fig. 1(a)), so

L(P17P25P35P4) i ﬁ(ﬁl:ﬁ?aﬁ3>ﬁ4) K O(O_pl,O_pQ,O_p3,O_p4).

where A stands for perspectivity or perspective transformation. In consequence,
the pencil of points P; ;=1...4 and the pencil of lines dp; ;_, 4 are related through
a projectivity of the form

L(P17P27P37P4) A 0(0_]71,0_192,0_])3,0_])4)-

where A stands for projectivity or projective transformation. Note that a projec-
tivity can be expressed as the combination of two o more perspectivities.
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Fig. 1. Construction of the distortion conics



On the other hand, the cross-ratio is a projective invariant, i.e. two pencils
of projective entities related through a projectivity share the same cross-ratio.
This means that the cross-ratio of points P; ;—..4 is the same as the cross-ratio
of their ideal projections p; ;—1...4. And, hence, it coincides with the cross-ratio
of the pencil of lines that passes through these projections. That is

(Pr, Py; P, Py) = (0py,0p4;0p3,0Ds)- (7)

A well-known principle of projective geometry ( Chasles’ Theorem) states that
“%f a, b, c, and d are points on a plane such that no three are collinear, a conic
is the locus (collection) of points a, b, ¢, d, and a fifth variable point x such that
(#a, vd; &c, xb) = c, where ¢ # 0,1”. This means that (op,,0p,; 0ps, 0ps) = ¢ is
the equation of a conic on which the center of distortion and the four distorted
points p; i=1..4 lie.

In conclusion, given the distorted projection of four collinear scene points
with known cross-ratio, there exists a unique conic that passes through those
points and the center of distortion (see Fig. 1(b)). We call this curve the dis-
tortion conic. In order to compute the center of distortion, several 4-tuples of
distorted points are needed. The center of distortion will be the intersection of the
distortion conics computed from all available 4-tuples of points (see Fig. 1(b)).
In the following subsection we will derive the equation of the distortion conic
and present a procedure to compute the center of distortion.

3.1 Computing the center of distortion
The cross-ratio of four collinear scene points is given by

D{D3.DsD
C:(DI’D4;D3’D2):D;D17DiDj (8)

The cross-ratio of a pencil of four lines is obtained as follows

. sinfy3sinfas  |0p; X Ops||0py X Opy|
(0p17 OPy4; 0P3, Op2) = - . = 1= — — — ) (9)
sinfosinfzs  |0p; X Opy||0ps X Opy|
— 19psx0p,|_
st = Tlop,IMop,T*
Expanding |op, x dp,| in terms of pixel coordinates, we have

where 6, is the angle between lines op, and op, and siné

lop, X op;| = uvs —usvy = {(Je —Jo)(is —To)dudy } — {(js —Jo) (it —T0)dudy }. (10)

From equations (8) (9) and (10), we get the distortion conic defined by points
Di,i=1...4 and cross-ratio c:

Q(io,jo) = Ai3 + Bigjo + Cjs + Dip + Ejo + F = 0, (11)
where

A = (i3 —41) (94 — 92) — c(ta —93) (42 — 41)



[(43 —41)(J2 — ja) + (41 — J3) (b4 — i2)] — c[(42 — 43) (41 — J2) + (J3 — ja) (42 —i1)]
(41 — J3)(J2 — Ja) — c(ga — Ja) (41 — j2)
[
[

Il

(3 —41)(Jat2 — J2ia) + (42 — 42) (Jai1 + Jris)] — c[(da — 43)(J2t1 — Jr%2) + (42 — 41)(Jais + jaia)]
(1 — Ja)(Jatz — j2ia) + (J2 — ja)(Jair — jrds)] — c[(Js — ja) (J2t1 — jri2) + (1 — j2)(Jads — jaia)]
= [jat2jst1 — jat1j2tia — jatajris + jii3j2t4] — c[jaisjots — jatsjite — jatajair + Jatajriz]
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The distortion center is the point common to all distortion conics. In general,
two conics intersect at most in four points (see Fig. 1(b)). So, we need several
4-tuples of collinear points in space to uniquely determine the distortion center.
It can be computed through the following minimization, which computes the
position of the point with minimum algebraic distance to all conics:

N>3
(io,Jo) = min > [Api® + Byij + Cij® + Dyi+ Exj + Fr)?,  (12)
1,
k=1
where [Ag, B, Ck, Dy, Ey, F}] are the parameters of the k-th distortion conic.
We propose the following algorithm for computing the distortion center:

1. For each tuple of 4 collinear points in the scene, compute their cross-ratio
using (8).

2. For their corresponding projections in the image, compute their distortion
conic using (11).

3. Compute the common point of intersection of all conics with (12)

3.2 The correction parameters

Once estimated the center of distortion, we are ready to compute k1, the radial
distortion parameter.

From equations (1-6) we can obtain the corrected coordinates (i,0) in the
image plane

@ =dy(j —Jo)[1+ (j —Jo)krdy, + (i —To)k1d2] (13)
b =dy(i o)1+ (j —Jo)mds + (i — )12, (14)

The unknowns of this equation are k1, the first radial distortion coefficient, d,,
and d,, the size of the pixel in the horizontal and vertical directions respectively.
In order to find the values of this unknowns we must set up a proper cost
function.

Under perfect pinhole projection, straight lines in the scene are projected
to straight lines in the image. But in our case, the straight lines in the image
are curved due to the effects of camera lens distortion. We know, however, that
ideally this lines should be straight, so this cost function will search for the
distortion values that straighten all known lines in the scene. This is what all
plumb-line methods do [1,2,8,10]. We will use the cost function proposed in [6]:

N
(b1,6) = min > (0f —of)(a5 —af) — (8f — of) (a8 —af),  (15)
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where, (4%, 9) are the corrected coordinates of the i-th point in the k-th tuple.
Minimizing this cost function for the unknowns mdi and rcld% will give us
the values that best fit with the distorted points. Note that we have taken d,,

and d, as common constant factors in the whole equation.

4 Experimental Results

In this section we will describe the experiments that we conducted in order to
test our method. Both synthetic and real image data have been considered.

For the synthetic experiments, we generate a planar calibration pattern, con-
sisting of points distributed in 8 rows and 12 columns, which gives us a total
of 96 calibration points. These points will be displaced from their original po-
sitions according to our radial distortion model. In order to test the suitability
of the algorithm we have distorted these points using two different parameters:
k1 = 5e — 7, which represents a low level of distortion and x; = le — 6 for
medium-high level of distortion. The true center of distortion in both cases is
(io = 288,jo = 384). Finally, these points will be perturbed using Gaussian noise
with standard deviation (o) varying from 0 to 2. The results shown in Figs. 2
and 3 represent the median value of 100 experiments made for each noise level.

The first experiment will use the synthetically generated data to evaluate
the estimation of the distortion center obtained by the algorithm presented in
section 3.1. In Fig. 2(a) we show the Euclidean distance between the computed
value of the distortion center and the value used as ground truth. From the
analysis of these results we can conclude that the procedure is quite sensitive
to the noise contaminating the data. This is so because the estimation of the
distortion conics parameters is quite sensitive to this noise.

In the second experiment we test the estimation of the correction parameters
& and & using the set of synthetically generated data and the distortion cen-
ter obtained from the previous experiment. Results are shown in figure Fig. 3.
Results show that the error in the computation of & and & increases almost
linearly with the amount of noise in the images.

In order to understand how these errors affect the process of undistorting the
image, we are going to make one more synthetic test. Using the ideal points of the
synthetic pattern and distorting them we will use our algorithms to estimate the
distortion parameters and undistort the image. Then, we compute the Euclidean
distance between the original points and the corrected ones. Figure Fig. 2(b)
shows the RMS of these distances.

Finally, in the last test we undistort a real image taken with a CCD Philips
camera using a Cosmicar/Pentax 6mm lens. Result are shown in figure Fig. 4. As
expected, after the correction process straight lines in the image appear straight.

5 Conclusions and Future Work

In this paper we have presented a method to estimate camera lens distortion
from the image of a set of collinear points of known cross-ratio. The method
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Fig. 2. Results for distortion center estimation and RMS of the undistortion process.
Dotted lines stands for k1 = be — 7 and solid lines for k; = le — 6.
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(a) Original distorted image (b) Undistorted image

Fig. 4. Experiments with real images.

computes the center of distortion and two correction parameters, & and &,
which implicitly model the first radial and decentering distortion coefficients. It
is based on the projective invariance of the cross-ratio of four collinear points.
Using this invariant, we compute the center of lens distortion as the intersection
of a set of conics.

Estimating the center of lens distortion is a very difficult task. A small error in
the location of image points entails a big error in the estimation of the distortion
center. This problem is common to all lens distortion estimation procedures.
However, the conic-based approach presented here provides a geometrical model
that can be seen as a step toward more accurate estimation procedures based
on, for example, knowledge of the uncertainties in the data.

In order to compute the distortion correction parameters, &; and &3, a plumb-
line method is used. In this case, the estimation error increases almost linearly
with the noise contaminating the data.

In a final experiment with both synthetic and real data, we show how the
estimation of the distortion parameters affects the correction lens distortion.

Further research is needed to model how the uncertainties in the location of
image points can be used to improve the estimation of the distortion parameters.
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