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Abstract. This paper presents an attempt to integrate planning fa-
cilities as the most generic description of intelligent behaviour for 3D
embodied agents.

Applying the state of the art of heuristic search planners (HSP), we
present a MinMin approach which is appropriate to control autonomous
characters in real time graphics environments.

In this paper we will describe how heuristic search domains can be ap-
plied to 3D IVAs as the most generic representation of its intelligent
behaviour and also justify the use of MinMin in behavioural animation
domains. We will also illustrate the planning functionalities obtained
using an extension of the classical dinner-date problem, now carried out
in 3D virtual environments.

1 Introduction

The increased graphic realism of virtual agents has generated corresponding ex-
pectations on their intelligence. For a virtual agent, intelligent behaviour consist
in selecting an appropiate sequence of actions and this can thus be described as
a planning problem.

Several approaches have been proposed in this field, probably the most com-
mon is using Final State Transition Networks (FSTN) as compiled plans, these
however lack flexibility do not make agents goals visible enough. Geib [10] has
proposed the use of refinement planning following a detailed study of anima-
tion requirements[19][10]. Funge has used situation calculus to generate intel-
ligent behaviours for virtual actors,[9] and Cavazza [6][5] has approach this
problem with Hierchical Task Networks (HTNs) for storytelling, considering
the knowledge intesive nature of this kind of applications.

The planning requirements for virtual actors depend on the specific applica-
tion, however we can identify these essential requirements:

— The domain representation should be appropiate to embodied agents in
virtual environments and identify both goals and physical actions.



— Solution plans should be computed efficiently, considering the time scale of
a virtual agent.

— In some cases when the agent evolves in a dynamic environment there is
need to interleave planning and execution as well.

There has been recently a renewed interest in search-based planning tech-
niques, as these have demonstrated significant performance on various planning
tasks [3][12] [16][18].

This has led us to apply a heuristic search planner (HSP), investigating the
integration of fully planning capabilities in virtual actors.

The rest of this paper is organised as follows, firstly we will present the
domain representation and the behavioral animation problem proposed to inte-
grate planning within 3D embodied agents. Then we will review the keypoints
associated to HSPs and finally, we discuss the results obtained by this integra-
tion describing a classical planning problem which is also relevant to a character
animation.

2 Planning for 3D embodied agents

As we have previously introduced, several behavioural animation methods have
been used traditionally of 3D agents to control the actuation skills and interac-
tion capabilities.

In animation domains, planning capabilities will consist in finding a right
sequence of actions that let an agent achieve its goals, with the added value of
seeing the solution-plan carried out by a 3D embodied agent. Considering this,
planning systems will provide embodied agents with a general method to drive
their intelligent behaviours, which will be displayed at the virtual environment
in order to see how the agent can solve their virtual planning problems.

In this context, plan optimality will not be an essential requirement, however
we will be normally interested in minimum length plans, that is, the minimum
sequence of actions that let the 3D embodied agent to achieve its goals. The
visualization of these minimum-length plans will display an efficient/intelligent
behaviour associated to the 3D agents.

For instance, intelligent agents in simulation systems could compute solution
plans in response to user’s instructions.

To integrate the mentioned planning capabilites in 3D embodied agents we
have considered the example that Figure 1 shows. It is an extension of the clas-
sical dinner — date planning problem, where basically an agent must calculate
a plan to achieve all the neccesary to prepare a dinner, such as removing the
garbage, wrapping a present, etc. We have extended this problem with more op-
erators (music, computer —work, ...) but also with new goals and preconditions,
such as to finish the work or to require fun for cooking.

Moreover, this scenario has similarities with the storytelling application de-
scribed in [6] and give us an opportunity to investigate with a (non-decomposable,
non-empty delete-lists) planning problem on a similar application.
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Fig. 1. Search domain representation

As we know HSP domains are represented mainly by three elements: a)
the domain representation of the problem, b) the search algorithm and c¢) the
heuristic function. In the next subsections, we will review the integration of
these tree key elements in our behavioural animation domains.

2.1 The search domain representation

Although the dinner-date problem was originally formulated in relation with the
Graphplan system, it can be easily redescribed in the HSP context using atomic
Strips representation (ignoring delete-list for the computation of the heuristic
function).

Our agent-centred approach is based on the typical state-model representa-
tion for planning domains [3]. Basically, each state will contain a set of atoms
representing the agent state (see Figure 1, e.g. (cleanHands, not garbage, not
work, ...)). To complete the problem formulation the agent will require a set of
operators which will represent its effectory capacity, mapping states to successor
states according to its preconditions.

In the context of planning for behavioural animation, we must notice that
the quality of the plans will be directly related to their lengths, so that, the
agents must avoid long-length plans which will display an undesirable behaviour
and hence, they should search for plans with the minimum-length associated.
Longer plans are often non optimal in their action sequence. For instance, an
agent who wash his hands before carrying out the garbage, will have to wash
his hands again.



To achieve this we are using the classical depth bounding, d criteria, which
will stop all the plans calculations beyond the maximum length plan allowed d.
In this way, the depth level reached by a goal state of any plan-solution, will
represent the length of this plan and it will be the quality factor considered
on the final agent decision making at the root of the tree. Considering that
the embodied agents should achieve their goals through plans with no actions
repeated, we have initialized d as the total number of operators the agent can
apply.

Figure 2 shows an scheme of the system architecture where basically the 3D
emodied agents can apply their plan operators as a atomic actions carried out
in the virtual environment.
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(HSP)
renGl Performer
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-
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Fig. 2. System Architecture

Taking into account the domain representation introduced, the next subsec-
tion will present MinMin as an adequate search algorithm to supply the planning
requirements for our 3D embodied agents.

2.2 Planning with MinMin

MinMin [12] has been proposed as a search algorithm for real time decision
taking. It has the advantage of searching forward from the current state to a
fixed depth horizon and then computes the heuristics values for the frontier
nodes. Furthermore MinMin provides a forward search method able to inter-
leave planning and action execution, and to extract the minimum-length plans
required.

As Geflner pointed out, [3] the heuristics calculation associated to every node
in classical HSPs, is the most expensive computational step associated to HSPs,
and MinMin reduces this calculation to the search horizon nodes.

Figure 3 shows how MinMin is capable of refining its solutions during the
search using a dynamic depth-bounding criteria. According to this, during the
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Fig. 3. MinMin search

plan-search this bounding factor d should be decreased to the length of the
last best plan extracted (the minimum one). This bounding is also useful to
overcome the MinMin main problem, that is cycling. A second bounding criteria
has been introduced to MinMin in order to improve its efficiency. This second
bounding (2-B) simply detects when a new state with no new effects is going to
be created and thus prunes it. (e.g. S, — Carry — Syseiess, So — Relax — Syseiess)-
The performance of the whole planning system at the funny — dinner — date
problem introduced will be shown, as the rest of tests, in the results section.

MinMin control is also adequate to extract the shortest-length plans, though
not always the optimal one, as each node will select the child with the minimum
cost (i.e. the node which could be part of a minimum length-plan solution).
In this way, at the root node tree the agent can perform an informed action
selection mechanism, deciding at each plan step the shortest strategy or sub-
plan which let him to achieve his goals.

2.3 Heuristics

We are using the independent domain heuristics presented by Bonet& Geffner in
[3] which can be easily adequate to MinMin search domains. Heuristics are com-
puted from the horizon nodes by ignoring delete-list and expanding the atomic
facts that belong to post-conditions until all the atomic facts corresponding to
the goal are met.



As mentioned before, the planning system which will control the 3D embod-
ied agent will be interested in plans with a minimum length, so, once a goal
state is achieved the heuristic function will simply return the depth of this goal
state.

It should be noted that we are not considering any kind of spatial knowledege
information at this point, such as, the physical distance to apply the operators,
and so, any minimum-length plan will be considered as an acceptable plan-
solution for our 3D embodied agents.

Then MinMin search control will select recursively the best child up to the
root of the tree, so that, the agent will be informed about the minimum-length
plan to carry out from its state and according to it, the next action to perform.

3 Results

The system has been fully implemented and tested over a number of initial
configurations in a graphic environment corresponding to the funny dinner-date
problem.

The table below shows a comparation between MinMin with a simple depth
bounding (d=10) and adding the second bounding introduced (2-B).

Table 1.- MinMin results and optimised implementation.

|S. Horizon|Nodes (2-B)|Time (2-B)| Nodes| Time ||
3 88261 1.39 sec. ||215540(3.47 sec.
4 105208

1.65 sec. [|383532(6.16 sec.

As table 1 shows, the overall performance obtained by MinMin is adequate
to 3D real time graphics environments. Furthermore, restricting at S, the depth-
criteria (d = 7), MinMin is able to obtain similar 6 plan length solutions in 0.082
secs.

Figures 3,4 illustrate the search-plan carried out by MinMin to solve the
funny dinner-date problem presented previously. To show the behaviour of Min-
Min algorithm, we have associated a solution vector to each search state, which
indicates the number of solutions extracted by MinMin in several depth levels.

In this way, the agent will start searching from its initial state S, using
MinMin, and will obtain solution plans of length 10. As mentioned earlier, Min-
Min will refine its solutions during the searching process so when MinMin find
a solution shortest than than the current best one it will decrease its depth
bounding d. Searching in this way, MinMin finally obtains plans of length 6 (see
Figure 3), as the minimum ones. Then the agent at the top of the tree will try
to apply the first operator associated to the last minimum plan calculated (e.g.,
S, — wrap — S1).

To achieve this in virtual environments, we have associated (action, position,
orientation) tuples to each operator the actor can apply (Figure 1). The reason
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Fig. 4. Integrating search-based planning in 3D virtual environments

is to apply an operator at the virtual environment consisting on reaching the
right (position, orientation) and then executing the atomic-animated action
associated, typically a simple keyframing table. This couple action-selection in
planning, to low-level motion simulation for executing the action.

As figure 4 shows, once the 3D agent has reached the right position and
orientation for wrapping the present, it will execute the associated action
(wrap). As we are considering only valid operators (those who will add new
effects to further states), once the action associated to the operator has been
applied, (i.e. the 3D agent has finished its keyframing table) its internal search
state would also be modified (S1 = (S,) + present). Then, the agent must
perform a new search from its new state (S1), interleaving in this way planning
and action execution, and achieving finally an intelligent autonomous behaviour
able to reduce the distance to its goals.

Finally, we show a complete agent plan execution performed in the 3D virtual
environment. To illustrate this, we have overdrawn the agent states and also
the operators undertaken at simulation time, indicating the associated actions-
positions in the virtual environment. In this way, we can visualise a complete
plan solution that will finally represent the intelligent agent behaviour in its 3D
virtual environment,.

All the tests and results showed in this paper have been performed on a
Pentium-IV(1.6Ghz) PC, using Performer graphics API under Linux O.S.
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Conclusions

We have described a specific approach to integrate fully search based planning
capabilities in 3D embodied agents. Performance of the planning system has
shown good potential for scaling-up on simulation tests. Our future work will
be oriented to include sensing and uncertain information in the planning system,
so that, a complete intelligent virtual agent architecture could be tested in 3D
virtual enviromental simulations.
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