Adaptive Bayes for User Modeling

Jodo Gama, Gladys Castillo*

LIACC, FEP - University of Porto
Rua Campo Alegre, 823
4150 Porto, Portugal
Email: jgama@liacc.up.pt
WWW: http://www.up.pt/liacc/ML
and
Department of Mathematics
University of Aveiro
email: gladys@mat.ua.pt

Abstract. The application of Machine Learning techniques to the task
of user modeling has been studied by several researchers. As most of
them pointed out, this task requires learning algorithms that should work
on-line, incorporate new information incrementality, and should exhibit
the capacity to deal with concept-drift. In this paper we present Adap-
tive Bayes, an extension to the well-known naive-Bayes, one of the most
common used learning algorithms for the task of user modeling. Adap-
tive Bayes is an incremental learning algorithm, that could work on-line.
We have evaluated Adaptive Bayes on both frameworks. Using a set of
benchmark problems from the UCI repository, and using several evalu-
ation statistics, all the adaptive systems shows significant advantages in
comparison against their non-adaptive versions.

Keywords: User Modeling, Machine Learning, Adaptive Bayes, Incremental
Systems

1 Introduction

The task of user modeling is a challenging one for machine learning. Observing
the user behavior is a source of information that machine learning systems can
use to build a predictive model of user future actions. This is a challenging task
because it requires incremental techniques that should work on-line. Moreover,
as pointed out in [12]:

User modeling is known to be a very dynamic modeling task - attributes
that characterize a user are likely to change over time. Therefore, it
is important that learning algorithms be capable of adjusting to these
changes quickly.

Nowadays with the explosion of the World Wide Web, has increased the need of
tools for automatic acquisition of user profiles, retrieval of relevant information,
personalized recommendation, etc. All these tasks could use learning techniques.
One of the machine learning algorithms most used in these tasks is naive Bayes
[11,10,9]. Naive Bayes has been studied both on pattern recognition literature
[4] and in machine learning [8]. Suppose that P(Cl;|z) denotes the probability
that example x belongs to class i. The zero-one loss is minimized if, and only if,
x is assigned to the class Cl, for which P(Cl|2) is maximum [4]. Formally, the
class attached to example z is given by the expression:

argmazx; P(Cl;|x) (1)

Any function that computes the conditional probabilities P(Cli|z) is referred
to as discriminant function. Given an example x, the Bayes theorem provides a
method to compute P(Cl;|z): P(Cl;i|xz) = P(Cl;)P(z|Cl;)/P(x)

P(x) can be ignored, since it is the same for all the classes, and does not
affect the relative values of their probabilities. Although this rule is optimal, its
applicability is reduced due to the large number of examples required to compute
P(x|Cli). To overcome this problem several assumptions are usually made. De-
pending on the assumptions made we get different discriminant functions leading
to different classifiers. In this work we study one type of discriminant function
that leads to the naive Bayes classifier.

1.1 The Naive Bayes Classifier

Assuming that the attributes are independent given the class, P(z|Cl;) can be
decomposed into the product P(z1|Cl;) * ... x P(x4|Cl;). Then, the probability
that an example belongs to class i is given by:

P(Cilz) < P(CL) [Pl;1CL) (2)

J

which can be written as:

P(Cli|) o< log(P(Cl;)) + > P(x5|ClL;) (3)
J

The classifier obtained by using the discriminant function 2 and the decision
rule 1 is known as the naive Bayes Classifier. The term naive comes from the
assumption that the attributes are independent given the class.

1.2 Implementation Details

All the required probabilities are computed from the training data. To com-
pute the prior probability of observing class i, P(Cl;), a counter, for each class
is required. To compute the conditional probability of observing a particular
attribute- value given that the example belongs to class i, P(z;|Cl;), we need

to distinguish between nominal attributes, and continuous ones. In the case of
nominal attributes, the set of possible values is a numerable set. To compute the
conditional probability we only need to maintain a counter for each attribute-
value and for each class. In the case of continuous attributes, the number of pos-
sible values is infinite. There are two possibilities. We can assume a particular
distribution for the values of the attribute and usually the normal distribution
is assumed. As alternative we can discretize the attribute in a pre-processing
phase. The former has been proved to yield worse results than the latter[3].
Several methods for discretization appear in the literature. A good discussion
about discretization is presented in [3]. In [2] the number of intervals is fixed to
k = min(10;nr. of dif ferent values) equal width intervals. Once the attribute
has been discretized, a counter for each class and for each interval is used to
compute the conditional probability.

All the probabilities required by equation can be computed from the training
set in one step. The process of building the probabilistic description of the dataset
is very fast. Another interesting aspect of the algorithm is that it is easy to
implement in an incremental fashion because only counters are used.

Domingos and Pazzani [2] show that this procedure has a surprisingly good
performance in a wide variety of domains, including many where there are clear
dependencies between attributes. They argue that the naive Bayes classifier can
approximate optimality when the independence assumption is violated as long as
the ranks of the conditional probabilities of classes given an example are correct.
Some authors[6,7] suggest that this classifier is robust to noise and irrelevant
attributes. They also note that the learned theories are easy to understand by
domain experts, most due to the fact that the naive Bayes summarizes the
variability of the dataset in a single probabilistic description, and assumes that
these are sufficient to distinguish between classes.

2 Iterative Bayes

In a previous article [5] we have presented an extension to naive Bayes. The
main idea behind Iterative Bayes is to improve the probability associated with
predictions. The naive Bayes classifier builds for each attribute a two-contingency
table that reflects the distribution on the training set of the attribute-values over
the classes. Iterative Bayes iterates over the training set trying to improve the
probability associated with predictions on the training examples.

2.1 An Ilustrative Example

Consider the Balance-scale dataset [1]. This is an artificial problem available at
the UCI repository. This data set was generated to model psychological exper-
imental results. This is a three-class problem, with four continuous attributes.
The attributes are the left weight, the left distance, the right weight, and the
right distance. Each example is classified as having the balance scale tip to the
right, tip to the left, or to be balanced. The correct way to find the class is the

greater of le ft_distance x le ft_weight and right_distance x right_weight. If they
are equal, it is balanced. There is no noise in the dataset.

Because the attributes are continuous the discretization procedure of naive
Bayes applies. In this case each attribute is mapped to 5 intervals. In an exper-
iment using 565 examples in the training set, we obtain the contingency table
for the attribute left_ W that is shown in Table 1.

Table 1. A naive Bayes contingency table

Attribute: left_'W (Discretized)
Class I1 12 13 14 15
Left 14.0 42.0 61.0 71.0 72.0
Balanced 10.0 8.0 8.0 10.0 9.0
Right 86.0 66.0 49.0 34.0 25.0

After building the contingency tables from the training examples, suppose
that we want to classify the following example:

left_W:1, left_D: 5, right_W: 4, right_D: 2, Class: Right
The output of the naive Bayes classifier will be something like:
Observed Right Classified Right [0.277796 0.135227 0.586978]

It says that a test example that it is observed to belong to class Right is classified
correctly. The following numbers are the probabilities that the example belongs
to each one of the classes. Because the probability p(Right|x) is greater, the
example is classified as class Right. Although the classification is correct, the
confidence on this prediction is low (59%). Moreover, taking into account that
the example belongs to the training set, the answer, although correct, does not
seems to fully exploit the information in the training set.

The method that we propose begins with the contingency tables built by the
standard naive Bayes scheme. This is followed by an iterative procedure that
updates the contingency tables. The algorithm iteratively cycle through all the
training examples. For each example, the corresponding entries in the contin-
gency tables are updated in order to increase the confidence on the correct class.
Consider again the previous training example. The value of the attribute left W
is 1. This means that the values in column 71 in table 1 are used to compute the
probabilities of equation 2. The desirable update will increase the probability
P(Right|z) and consequently decreasing both P(Left|x) and P(Balanced|x).
This could be done by increasing the contents of the cell (I1;Right) and decreas-
ing the other entries in the column I1. The same occurs for all the attribute-
values of an example. This is the intuition behind the update schema that we
follow. Also the amount of correction should be proportional to the difference
1 — P(C;|z). The contingency table for the attribute left_ W after the iterative

Table 2. A naive Bayes contingency table after the iteration procedure

Attribute: left_'W (Discretized)

Class 1 2 I3 14 1I5
Left 7.06 42.51 75.98 92.26 96.70
Balanced 1.06 1.0 1.0 1.0 1.08
Right 105.64 92.29 62.63 37.01 20.89

procedure is given in figure 2'. Now, the same previous example, classified using
the contingency tables after the iteration procedure gives:

Observed Right Classified Right [0.210816 0.000175 0.789009]

The classification is the same, but the confidence level of the predict class in-
creases while the confidence level on the other classes decreases. This is the
desirable behavior.

The iterative procedure uses a hill-climbing algorithm. At each iteration, all
the examples in the training set are classified using the current contingency ta-
bles. The evaluation of the actual set of contingency tables is done using equation
4:

n
© 3 (1.0 — maz;p(Cyl:)) 4)
i=1

where n represents the number of examples and j the number of classes. The
iterative procedure proceeds while the evaluation function decreases. To escape
from local minimum we allow some more iterations till the maximum of a user-
defined look-ahead parameter.

The pseudo-code for the adaptation process is shown in Figure 1. To update
the contingency tables, we use the following heuristics:

1. If an example is correctly classified then the increment is positive,otherwise
it is negative. To compute the value of the increment we use the following
heuristic (1.0 —p(Predict|x))/#Classes. That is, the increment is a function
of the confidence on predicting class Predict and of the number of classes.

2. For all attribute-values observed in the given example, the increment is added
to all the entries for the predict class and half of the increment is subtracted
to the entries of all the other classes.

The contingency tables are updated each time a training example is seen. This
implies that the order of the training examples could influence the final results.
This update schema guarantees that after one example is seen, the probability of
the prediction in the correct class will increase. Nevertheless, there is no guaranty
of improvement for a set of examples.

! The update rules tries to maintain constant the number of examples, that is the
total sum of entries in each contingency table. Nevertheless we avoid zero or negative
entries. In this case the total sum of entries could exceed the number of examples.

procedure AdaptModel (Model, Example, Observed, Predicted, Step)

delta Step x (1-P(Predicted|Example)/#Classes) //Compute the increment
If (Predicted<>0bserved) then delta = -1 x delta

For each Attribute // the increment is used to update the contingency tables
For each Class
If (Observed == Predicted)
Model (Attribute,Class,AttributeValue)+= delta
Else
Model (Attribute,Class,AttributeValue)-= delta/#Classes
Endif
if Model (Attribute, class, AttributeValue) < 1.0
Model (Attribute, Class, AttributeValue) = 1.
Next Class
Next Attribute
return: Model
End

0

Fig. 1. Pseudo-code for the Adaptation Model function.

The starting point for Iterative Bayes is the set of contingency tables built
by naive Bayes. In these work we study Adaptive Bayes, an algorithm that use
the update schema of Iterative Bayes in an incremental mode.

3 Adaptive Bayes

Given a decision model and new classified data not used to built the model what
should we do? Most of the time a new decision model is built from the scratch.
Few systems are able to adapt the decision model given new data. The naive
Bayes classifier is naturally incremental. Nevertheless most interesting problems
are not stationary, that is the concepts to learn could change over time. In these
scenarios forget old data to incorporate concept drift is a desirable. An important
characteristic of Iterative Bayes is the ability to adapt a given decision model
to new data. This property can be explored in the context of concept-drift. The
update schema of Tterative Bayes could be used to an incremental adaptive Bayes
able to deal with concept drift.

We consider two adaptive versions of naive Bayes: incremental adaptive Bayes
and On-line adaptive Bayes. The former built a model from a training set up-
dating the model (the set of contingency tables) once after seeing each example
(there is no iterative cycling over the training set). The latter works on an on-line
framework: for each example the actual model makes a prediction. Only after
the prediction the true decision (the class of the example) is known.

The base algorithm for the incremental adaptive Bayes is presented in figure
2. The base algorithm for the on-line adaptive Bayes is presented on figure 3.

Procedure IncrementalBayes(Training Set, Adaptive)
inputs: The training set, Adaptive Mode

Initialization: Model = initialise all counters to zero
For each Example in the Training Set
IncrementCounters(Model, Example, Observed)
if Adaptive=TRUE then AdaptModel(Model, Example, Predicted, 1)
Next Example
Return Model
End

Fig. 2. Pseudo-code for the Incremental Adaptive Bayes.

Initialisation: Model = Randomly initialise all counters

Procedure OnLineBayes(Example, Model, Adaptive)
Predicted <- PredictClass(Model, Example)
Observed <- Class of Example
IncrementCounters(Model, Example, Observed)
If Adaptive = TRUE Then AdaptModel (Model, Example, Predicted, 1)
Return Model
End

Fig. 3. Pseudo-code for the On-Line Adaptive Bayes.

4 Experimental Evaluation

We have evaluated all variants of Adaptive Bayes in a set of benchmark prob-
lems from the UCI repository [1]. The design of experiments for the incremental
versions of the algorithms is the standard 10-fold cross validation. All the algo-
rithms incrementally built a model from the training set and the model is used to
classify the test set. The evaluation statistics is the average of the 10 error rates.
While the incremental naive Bayes should generate exactly the same model as
its batch version, the adaptive Bayes could generate a different model.

For the the on-line versions, the experimental set-up was designed as follows.
All the available data is presented to the algorithm in sequence. Each example
is classified with the actual model. After the prediction the algorithm modifies
its decision model. The evaluation statistic is the percentage of misclassified
examples. This process is repeat ten times using different permutations of the
dataset.

The results are presented on table 3. A summary of evaluation statistics is
presented on table 4. All evaluation statistics shows the advantage of using the
proposed adaptation process. The adaptive process seems to be more advanta-
geous in the on-line framework. The reader should take into account that we
can not compare the results between the incremental and on-line versions: the
performance statistics are very different.

We should note that the computational complexity of all the algorithms is
the same: O(n) where n represents the number of examples.

5 Conclusions and Future Work

The application of Machine Learning techniques to the task of user modeling
has been studied by several researchers. Learning algorithms for user modeling
should work on-line, incorporate new information in an incremental way, and
with the capacity to deal with concept-drift.

In this paper we have studied the behavior of adaptive Bayes, a new incre-
mental algorithm based on naive Bayes that could work on-line. Adaptive Bayes
uses the same adaptation strategy used in Iterative Bayes - a batch classifier.
The main idea behind Iterative Bayes is to improve the probability associated
with predictions. This strategy is used on Adaptive Bayes to guide the adap-
tation process. In a set of benchmark datasets, the adaptation process shows
clear advantages over a non-adaptive naive-Bayes both on predictive and on-line
frameworks.

The next step of this work is to incorporate the on-line adaptive Bayes in a
WEB based teaching system.

Acknowledgments:

Gratitude is expressed to the financial support given by the FEDER, the Plurian-
ual support attributed to LIACC, and ALES project (POSI/39770/SRI/2001).

References

1. C. Blake, E. Keogh, and C.J. Merz. UCI repository of Machine Learning databases,
1999.

2. Pedro Domingos and Michael Pazzani. On the optimality of the simple Bayesian
classifier under zero-one loss. Machine Learning, 29:103-129, 1997.

3. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretiza-
tion of continuous features. In A. Prieditis and S. Russel, editors, Machine Learning
Proc. of 12th International Conference. Morgan Kaufmann, 1995.

Table 3. Comparison between Incremental and On-line naive Bayes and Adaptive

Bayes

Dataset

Incremental
Naive Bayes Adaptive

On-Line
Naive Bayes Adaptive

Adult
Australian
Balance
Banding
Breast(Wis)
Cleveland
Credit
Diabetes
German
Glass
Heart
Hepatitis
Ionosphere
Iris

Letter
Mushroom
Satimage
Segment
Sonar
Vehicle
Votes
Waveform
Wine

17.415 +0.7 14.721 +£0.4
14.323 £0.4 13.904 £0.6
8.569 +0.2 12.853 +0.8
23.147 £0.7 20.879 +1.5
2.691 +£0.1 2.834 £0.1
17.965 +£1.1 17.329 £0.8
14.477 £0.4 14.290 £0.3
24.041 £0.4 24.947 +0.5
24.290 £0.4 24.750 +0.5
35.660 £1.8 36.935 +2.1
16.556 +1.0 16.037 £0.5
15.364 +0.5 16.869 £1.5
11.247 +£0.7 9.154 £0.3
4.267 £0.6 5.267 £0.7
40.380 £0.7 27.458 £1.5
3.081 +£0.0 1.707 £0.1
18.996 +0.1 20.777 £0.1
9.788 +0.1 12.329 £0.2
26.042 £1.3 23.755 +£1.9
38.516 £0.7 37.902 +0.8
9.995 +£0.1 8.796 +0.4
18.926 +0.3 14.656 +0.3
1.959 +£0.5 3.705 £0.5

19.525 £0.1 14.726 0.1
10.652 £0.1 11.145 £0.2
12.192 £1.8 10.080 £0.7
13.403 £0.4 10.840 +0.3
2.303 +£0.1 2.375 £0.2
15.116 +0.6 12.640 +£0.9
10.174 £0.1 11.116 +0.3
22.279 £0.3 20.534 0.6
17.200 £0.4 19.300 £0.5
24.720 £0.6 20.187 +0.5
11.926 +0.6 11.815 +0.4
7.613 £0.3 6.774 £0.3
5.413 +£0.0 5.584 £0.1
4.267 £0.6 3.467 £0.4
32.065 £0.3 25.505 +0.3
5.399 +£0.2 2.067 £0.1
19.617 £0.1 15.616 +0.1
11.558 £0.0 7.481 +0.1
2.404 £0.0 3.365 0.0
26.229 £0.5 21.489 £0.5
8.805 +£0.3 7.770 £0.5
16.315 £0.1 11.763 +0.1
14.045 £0.0 11.236 +0.0

Dataset

Incremental

On-Line

Naive Bayes Adaptive Naive Bayes Adaptive

Arithmetic Mean
Geometric Mean
Average Rank

Wins / Losses -

1729 16.60 13.62 11.6
1334 13.19 1113 9.54
1.7 1.4 1.2 1.7
10 /13 - 6/17

Table 4. Summary of Results.

10.

11.

12.

R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. New York,
Willey and Sons, 1973.

J. Gama. Iterative Bayes. In S. Arikawa and K. Furukawa, editors, Discovery
Science - Second International Conference. LNAI 1721, Springer Verlag, 1999.

I. Kononenko. Semi-naive Bayesian classifier. In Y. Kodratoff, editor, Furopean
Working Session on Learning -EWSL91. LNAI 482 Springer Verlag, 1991.

P. Langley. Induction of recursive Bayesian classifiers. In P.Brazdil, editor, Proc.
of European Conf. on Machine Learning. LNAI 667, Springer Verlag, 1993.

Tom Mitchell. Machine Learning. MacGraw-Hill Companies, Inc., 1997.

Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun, and Tom Mitchell.
Text Classification from Labeled and Unlabeled Documents using EM. Machine
Learning, 39:1-32, 2000.

Michael Pazzani and Daniel Billsus. Learning and revising user profiles: the iden-
tification of interesting web sites. Machine Learning, 27:313, 1997.

Mia Stern, Joseph Beck, and Beverly Woolf. Naive bayes classifiers for user mod-
elling. In Proceedings of the User Modelling Conference. Morgan Kaufmann, 1999.
G. Webb, M. Pazzani, and D. Billsus. Machine learning for user modelling. User
Modelling and User-adapted Interaction, 11:19-29, 2001.

