
Multi-Agent Systems and Network Management - A
Positive Experience on Unix Environments

Nelson dos Santos Júnior1,2, Flávio Miguel Varejão2 e Orivaldo de Lira Tavares 2

1 Companhia Siderúrgica de Tubarão
Av. Brigadeiro Eduardo Gomes, s/n - Jardim Limoeiro

CEP 29164-280 - Serra - ES - Brasil
nsantos@tubarao.com.br

2 Universidade Federal do Espírito Santo - UFES
Centro Tecnológico - Programa de Pós-Graduação em Informática

Av. Fernando Ferrari, s/n - Campus de Goiabeiras
CEP 29060-900 - Vitória - ES – Brasil

{tavares, fvarejao}@inf.ufes.br

Abstract. This paper presents an experiment of using a multi-agent system that
improves the efficiency in network management on Unix environments. This
system aims to decrease the financial damages occasioned by processing
interruptions of the computational environment. The multi-agent system is
based on a distributed and delegated management approach and it was
developed using the GAIA methodology for analysis and project of agent-based
systems. The agents architecture is based on activities and rules base. The
agents have lists of activities and apply their rules bases to accomplish them.

Keywords: multi-agent system, network management, unix, intelligent agent, gaia
methodology.

1 Introduction

Currently, the computational environment of many companies is composed by a great
variety of hardware components, software, operating systems, etc. Depending directly
on their computational environment, there are several applications (systems) that
companies use to support their main businesses. The stability and readiness of this
computational environment have become more and more important so as to allow
greater productivity and efficiency of companies. Slowness or even unavailability of
some of the company most critical applications could be the result of any unstable or
unavailable part of the computational environment, and can generate large financial
damages [10] [12].

This article presents a work on how the multi-agent system-based technology [1] [3]
can increase the readiness of computational environments. The multi-agent system
has been gradually developed to deal with the different parts of computer network

management. Initially, the experiments have been only performed on Unix
environments. On these environments, a common problem that often causes damages
to the stability of user applications is the file system full problem. We have chosen this
problem to observe the multi-agent system performance. It happens when some disk
space shared by many applications is 100% used. Then, some applications become
unavailable and others have their response time significantly enlarged. The traditional
way of handling this problem depends on human experts. Monitoring tools or
complaining users notify the experts about the problem and they must identify the
problem causes and take the corrective actions. The main pitfalls associated to this
procedure are the possible unavailability of human experts (the problem may happen
at any time, including during the night, weekends and holidays) and delays on the
problem solving (the problem causes and their corrective actions may not be trivial).
It is important to emphasize that delays on the file system unavailability increase the
possibility of provoking a cascading effect over the overall network environment,
suspending and aborting many other applications.

The multi-agent system was developed using the GAIA Methodology [18] for
analysis and project of agent-based systems, and aiming the implementation of a
multi-agent system in the Companhia Siderúrgica de Tubarão (CST) 3. Due to the
very fact that it is a metallurgical company producing 24 hours a day, the main
businesses in CST are supported by applications which must be maintained stable and
available as long as possible. The multi-agent system is able to identify the causes of
the file system full problem and take actions such as canceling processes and
removing or reallocating files, therefore, generating new free disk spaces and
increasing the environment availability. The multi-agent system is composed by
several specialized agents acting on different parts of the Unix environment. Each
agent may react to a list of hierarchically ordered activities and have a knowledge
base describing how to perform these activities.

Analysis of the log of our experiment has shown that the multi-agent system avoided
that important financial and production control systems were interrupted and provided
disk space for executing routine backup procedures (which, otherwise, would not be
performed).

This article has the following structure: section 2 introduces a general view of the area
of network management and services. Section 3 presents a description of the multi-
agent system. In section 4, we describe the experiment being performed. Finally, in
section 5, the conclusions and future works are presented.

3 http://www.cst.com.br

2 Network Management Approaches

The network management main approach has been the IETF Management Structure
(SNMP). The SNMP structure is based on a small group of concepts: agents or
managed nodes (which represent elements of the network, as bridges, routers,
switches, etc.), manager or network management system (which provides a set of
operations to the network support team), managed information base - MIB (represents
the information that can be manipulated by each agent), the management protocol -
SNMP (standard way of extracting management information from the systems) and
the proxy (allows the interaction of the SNMP structure with components that don't
include this structure) [10] [12].

The SNMP structure is a centralized approach which uses distributed agents to collect
manageable information. However, this approach has some problems when dealing
with extensive and complex network models. The central manager may have some
troubles for handling great amounts of manageable information and for managing a
large number of geographically distributed sites [12] [16].

An alternative approach uses the “divide and conquer” strategy for promoting
solutions based on distributed management and on delegation [12]. Several works use
this approach, such as proposed by BRITES [2], GOLDSZMIDT [7] and
OLIVEIRA [14]. In this approach, a main manager delegates the control to several
distributed workstations and to more powerful agents. By promoting the collaboration
among these agents, we have several management “islands”. This procedure
increases the reliability and failure tolerance of the network environment [12].

Another approach, considered by many researchers as the ideal solution for the
management complex network management, is the paradigm of mobile agents' [4]
[10]. The term Mobile Agent refers to autonomous programs which can move through
the network, from node to node, and assume the knowledge of an agent, i.e., acting as
users or other entities [15]. Researches have been made in distributed network
management and delegation [7], network services deliver [9], optimization of network
traffic and failure tolerance of networks [11].

Whichever approach is adopted, it should aim to promote the pro-active concept in
the network management. Several approaches have used this concept, such as,
CHIU[5], DE FRANCESCHI [6] and HOOD [8].

3 The Multi-Agent System

The multi-agent approach is based on distributed management and on delegation. The
agents are permanently acting in specific parts of the computational environment,
being able to solve from simple routine problems (of their strict domain) to even more
complex problems that involve communications and activities among several agents.
Our approach was chosen based on the characteristics of the problem to be solved (the
need for immediate actions instead of having to wait for human intervention), as well

as on the intelligent agents characteristics (autonomy to take actions, always active
and ready to take actions, capacity to act together with other agents, speed equivalent
to the computational processors in which they are installed, etc.) [17].

The multi-agent system was developed using the GAIA4 methodology [18] for
analysis and project of systems based on agents. The multi-agent system includes the
following roles: ADMINISTRATOR, MONITOR, COORDINATOR and
CONTROLLERS.

The computational environment represented in figure 1 is composed of several
hardware components which host multi-agent systems. Inside these hardware
components, there are software components and other components that the system
may control. The monitor role is also part of the computational environment and is
represented by the monitoring tools, as shown by the “black box” in figure 1.

Figure 1 - Global Architecture

Each multi-agent system has an agent that coordinates the other controlling agents.
These agents are responsible for the communications among the controlling agents
and also allow the interaction between the multi-agent system and the human experts.
In addition, they receive the information about the problems detected by the
monitoring tools and distribute them to the appropriate controlling agents.

The controlling agents are responsible for the specific control of services and parts of
the computational environment. For instance, we may have safety controllers,
database controllers, response time, disk space, cleaning, printing service, etc.

4 http://www.inf.ufes.br/~tavares/dsba

Research with similar architectures are found in the works of ABECK [1] and
MARZO [13].

All agents have the same architecture. This feature allows the construction of a unique
agent programming structure. The agent architecture is based on activities and rule
bases. The agents should perform activities and apply their rule bases to accomplish
them. The distinction between agents is expressed in their rule bases. Figure 2 shows
that, if there is no longer any activity to be accomplished, the agents change their state
to “sleeping”. This state is disabled as soon as a new activity to be accomplished is
sent to the agent or the sleeping time ceases.

Figure 2 - Agent Processing Architecture

Every agent selects the highest priority activity to perform first, as viewed in Figure
2. The fixed activities are executed after the “sleeping” state. The priorities sequence
guarantees the compliance with the proposed hierarchical structure because an agent
will always accomplish an activity generated by a human expert first, no matter how
many fixed or communications activities it must have to accomplish in a given
moment.

We developed a coordinator, a disk space controller, a processes controller, and a
cleaning controller agent for solving this problem. The disk space controlling agent
has the function of controlling the allocation of the computer disk space in order to
maintain the environment stability. The processes controlling agent is responsible for
controlling all the processes executed in the computer, analyzing CPU consumption,
looping states, process ownership and the interdependencies among the processes.
The cleaning controlling agent is responsible for controlling and optimizing the use of
files inside the computer. It controls where the main files are and who is responsible
for them. It also performs the cleaning of temporary files.

4 The Experiment

The strategy to obtain results in the experiment was divided in choosing an
appropriate environment for the multi-agent system's operation, to choose a problem
with appropriate complexity degree, to test the agents individually, to test the agents'

united operation with those changing communications and finally to analyze the
results obtained with the multi-agent system's operation in a period of three months.

4.1 The Environment's Choice

The experiment development strategy consisted of choosing a part of the
computational environment that was critical in terms of availability, involving a high
level of complexity and demanding non trivial solutions and the participation of
several controlling agents acting together to solve them. The Unix environment was
the one chosen. The main applications assisting the metallurgical processes of CST
use databases installed in Unix servers. The prototype was initially installed on eight
Unix servers: two of development, one of endorsement and five of production
(financial, supply, histories, control and supervision). The language chosen for the
development of the agents was the language Korn Shell because it is native of the
Unix environment (thus, computationally efficient) and allows the complete
environment control.

4.2 The Problem's Choice

The file system problem usually happens when a Unix environment process saves (or
is still saving) large files or a large number of small files in the disk area. This
problem solution consists of canceling the process creating the files, whenever it is
still active, and then removing or moving those files to some free disk area in the
same computer or in another one. That problem allows a good observation of the
multi-agent system's operation, because it demands the constant communication
among the agents to be solved. Another important factor for the experiment, is of the
problem to happen sometimes a week and in any schedule, making possible real
verification of the multi-agent system's operation. Finally, the causes and solutions of
the healthy problem very well defined, as well as the flow of communications and
activities that the agents would have to execute.

4.3 The Individual Tests of the Agents

The first step for the acceptance and trust in the multi-agent system is it of trusting
that the agents individually work. For that programs were prepared to simulate a
problem in a specific area of the environment, where it knew each other the causes
and improve solutions. After the release of the problem, each agent was activated and
soon after having disabled following the necessary flow to solve the problem, and
they were made analyses in the logs of those agents' performance. This phase
demanded plenty tests and corrections in the knowledge bases agents' .

4.4 The Multi-Agent System's Test

After each agent's individual operation to be approved, the multi-agent system was
completely activated, with all the agents working at the same time, but prepared to
solve and to investigate only the specific problem. Parallel to the multi-agent system's
operation, several programs were activated to take care of the safety for unexpected

effects of actions of the system. Those programs identified relative abnormalities to
parameters of the Unix environment that could be prejudiced for the multi-agent
system, and if that it happened, it would disable the same. The next phase was it of to
throw the problem and to collect the agents' logs and to validate the performances. A
following important phase was the stress test of the system, where the problem was
thrown at random and automatically about 30 times a day for 10 days. After the good
results of the stress test, the system was prepared to investigate any problems in the
environment, but only informing that actions would have taken. After 30 days with
appropriate operation, the knowledge bases of the agents were fed with information
from where it could take actions and where it would not be able to act. Finally the
multi-agent system was send for the other Unix servers.

4.5 Detailed operation of the Multi-Agent System

In general lines, after being notified by the monitoring tools of some problem in some
area of the environment, the multi-agent system has to reproduce actions that
specialists would take to solve that. Basically, it would be to identify which the files
that are in the moment the responsible for the increase in the occupation rate and
processes are existed using those files. Identified the processes and files, it is canceled
the processes and the area is liberated removing or moving the files.

Initially, the monitoring tool sends an activity for the coordinating agent, whose
content informs where it is the area with problems and which the current rate of
occupation. In the experiment, the monitoring tool was configured to verify all the
areas of the computer every 3 minutes and to generate a problem for the multi-agent
system, if some rate it was above 95% of occupation.

The coordinating agent verifies for the type of the activity which would be the
responsible controlling agent for solving the problem and directs it for that agent. In
that case, the space disk controlling agent is the responsible and receives the activity
directed by the coordinating agent. In the experiment, the coordinating agent's
knowledge base was fed with the responsible by resolutions of several types of
problems and the result was I always need.

The space disk controlling agent, when receiving the activity, looks for initially to
confirm if the problem continues to happen. Confirming that, it tries to identify the
causes of the problem. Identifying the causes, it directs extra activities of cancellation
of processes and cleaning of files for the coordinating agent, that has the role to
distributing the activities. In the experiment, the causes were precisely identified.
Those varied of problem for problem, being able to be sometimes originated by an or
more files with an or more processes. Problems found in the identification they were
current of lack of rights for investigation in certain directories or due to the problem
already to have finished when the agent began the identification. In that case the agent
the problem concluded with status of anything to do.

The coordinating agent again received activities, this time originated by the space disk
controlling agent and identified which agents would be the responsible for those,
directing to proceed.

The processes controlling agent and the cleaning controlling agent had in your
knowledge bases, relationships of countermands for cancellation certain processes as
well as removal certain files. In the experiment, when those countermands were
identified the specific agent it could not solve the activity and it returned that
information for the coordinating agent that directs the impossibility for the space disk
controlling agent. The space disk controlling agent in that case, documented the
impossibility of solving the problem and that concluded, informing the specialists the
found countermands. Not having involved countermands, the processes controlling
agent would usually cancel the requested processes and the cleaning controlling agent
would remove the suitable files. In the experiment, we chose until we consolidate the
acceptance of the system, for the agents to inform the specialists that them agents
would have done to solve the problem, as well as informing to the responsible for the
affected systems of those actions. The analysis of the logs of the actions taken up to
now by the agents they were shown very positive, not having indication of disastrous
actions for the environment.

Finally the controlling agents came back for the coordinating agent the execution of
the activities that directs those information for the space disk controlling agent that
the problem concluded.

4.6 Obtained Results

In the table 1, we see a summary of the obtained results.

Table 1: Results Obtained in Multi-agent System's Experiment

Time of Operation of the
Experiment

90 days – Feb until May of the 2002

Amount of Total Problems 78
Amount of Resolved
Problems

68

Percentile of Resolved
Problems

88%

Benefits reached by the
system

Avoided that important financial and production
control systems were interrupted;
Provided disk space for executing routine backup
procedures;
Avoiding problems of response time for maintaining
critical file systems below 100% of occupation.

The reasons of not resolution of problems for the multi-agent system was identified
with lack of rights of investigation certain directories and problem already concluded
in the moment of the analysis. The results obtained with the experiment of a multi-

agent system's operation it has been very positive, generating some acquired
important knowledge besides in the experiment, such as in the identification of
responsible places for most of the problems and the specialists' performance close to
the responsible for the definitive solutions as well as in the popularization of
technology use based on Artificial Intelligence for the organization with practical
experiment bringing trust in your use.

5 Conclusions and Future Work

This work shows how an Artificial Intelligence based technology, not frequently used
in the routine working environment of companies, can be of great value for keeping
available the company computational environment.

The multi-agent system may avoid to stop parts of the industrial production, failures
in performing financial operations that may provoke fines, human expert time spent
solving complex problems that began simple, loss of time from users, customers
having their purchases impeded, accidents with our without human loss, etc. The good
results obtained by the multi-agent system have motivated claims from the human
experts to include new and more complex problems to be solved. New knowledge is
being included to the agent rule bases and new agents are being constructed to attend
these demands.

In the short term, we intend to add more controlling agents to the Unix environment
to evaluate the growing difficulties of an increasingly complex agent structure acting
together. The next controllers will be the database ones (a type of omnipresent DBA),
the safety ones (to control the access to the computers, invasions attempts, password
control, etc.), the response time (to maintain the environment with suitable
performance rates) and other specific services controllers. It is also our intention to
develop in the medium term agents using a language compatible with other
environments that can be controlled (NT, Netware, WEB, etc.). In the long term, we
intend to endow the agents with a type of learning capacity, through the development
of “curious” or “questioning” agents which register situations in which the multi-
agent systems have failed. These agents will keep questioning the human experts
about how these agents were solved. Another type of learning happens when the
agents themselves inform the agents of the same type located in other hardware about
alterations in their knowledge base. With the growing complexity of the knowledge
bases, it would be ideal to have a way to make the agents themselves optimize those
bases in order to get better solutions than the ones previously used. In this context, the
agents will be able to teach the human experts.

References

1. ABECK, S.; KOPPEL, A.; SEITZ, J.; A Management Architecture for Multi-Agent
Systems. Proceedings of the IEEE Third International Workshop on System Management.
Newport, Rhode Island. Apr., 1998.

2. BRITES, A.; A Protocol-Independent Notation for the Specification of Operations and
Management Applications. Proceedings DSOM'94, Fifth IFIP/IEEE International
Workshop on Distributed Systems: Operations & Management. Oct. 1994.

3. BRITO, S. R.; TAVARES, O. L.; Agentes Inteligentes: Definições, Aplicações e
Comunicação. Revista Engenharia - Ciência & Tecnologia. ISSN 1414-8692. Vitória-ES,
Ano 2, No. 9, p. 13-20; mar.-abr. 1999.

4. BUCHANAN, W.J.; NAYLOR, M.; SCOTT, A.V.; Enhancing Network Management
using Mobile Agents. Proceedings of the 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems. Edinburgh, Scotland. Apr.
2000.

5. CHIU, T.; Getting Proactive Network Management from Reactive Network Management
Tools. International Journal of Networks Management. Vol. 8, Issue 1, Pag. 12-17, 1998.

6. DE FRANCESCHI, A.S.M.; ROCHA, M.A.; WEBER, H.L.; WESTPHALL, C.B.;
Proactive Network Management Using Remote Monitoring and Artificial Intelligence
Techniques. Proceedings of the 2nd IEEE Symposium on Computers and Communications
(ISCC'97). Jul. 1997.

7. GOLDSZMIDT, G.; YEMINI, Y.; Delegated Agents for Network Management. IEEE
Communications Magazine. Vol. 36 Num. 3, Pag.: 66-71, Mar. 1998.

8. HOOD, C.S.; JI, C.; Intelligent Agents for Proactive Fault Detection. IEEE Internet
Computing. Vol. 2, No. 2, Mar./Apr. 1998.

9. KRAUSE, S.; MAGEDANZ, T.; Mobile Service Agents enabling Intelligence on Demand
in Telecommunications. Proceedings of IEEE GLOBCOM'96, 1996.

10. LIPPERTS, S.; Enabling Alarm Correlation for a Mobile Agent Based System and
Network Management - A Wrapper Concept. Proceedings of the IEEE International
Conference on Networks. Brisbane, Australia. Oct., 1999.

11. LOPES, R.P.; OLIVEIRA, J.L.; Software Agents in Network Management. Proceedings
of the 1st International Conference on Enterprise Information Systems - ICEIS'99. Setúbal,
Portugal. Mar. 1999.

12. LOPES, R.P.; OLIVEIRA, J.L.; On the Use of Mobility in Distributed Network
Management. Proceedings of the 33rd Hawaii International Conference on System
Sciences. Maui, Hawaii, Jan., 2000.

13. MARZO, J-L.; VILÁ, P.; FABREGAT, R.; ATM Network Management based on a
Distributed Artificial Intelligence Architecture. Proceedings of the fourth International
Conference on Autonomous Agents. Pag: 171-172. Barcelona, Spain. Jun. 2000.

14. OLIVEIRA, J.; Arquitectura para Desenvolvimento e Integração de Aplicações de Gestão.
Tese de Doutorado. Universidade de Aveiro. Sep. 1995.

15. PHAM, V; KARMOUCH, A., Mobile Software Agents: An Overview. IEEE
Communications, Vol. 36, Num. 7, pag: 26-37, Jul. 1998.

16. SPRENKELS, R.; MARTIN-FLATIN, J-P.; Bulk Transfer of MIB Data, The Simple
Times, Vol. 7, Num. 1, Mar., 1999.

17. WOOLDRIDGE, M.; JENNINGS, N.R. Applications of the Intelligent Agents. In: N. R.
JENNINGS, N. R.; WOOLDRIDGE, M. (Org.). Agent Technology: Foundations,
Applications and Markets. New York: [s.n.], 1998.

18. WOOLDRIDGE, M.; JENNINGS, N.R.; KINNY, O. A Methodology for Agent-Oriented
Analysis and Design. In: O. Etzioni, J.P. Muller, and J.Bradshaw, Editors: Agents'99:
Proceedings of the Third Annual Conference on Autonomous Agents, Pag: 69-76, Seattle,
WA, 1999.

