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Abstract. Very few works exist on Multi-Agent systems to improve symbolic 
learning through knowledge exchange. The motivation of this work is to mimic 
human beings interaction in order to reach better solutions. This aims at 
supporting a recent practice in Data Mining which is the use of collaborative 
systems. These systems can be based on agents which interact with each other 
and with the environment, cooperating to solve a problem. This article 
proposes an architecture for such an environment which combines different 
symbolic Machine Learning algorithms encapsulated in agents that collaborate 
to improve their knowledge. We use this environment along with a method 
called Rescaling to improve knowledge discovery. 
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1 Introduction 

The motivation of this work is the application of a multi-agent system for improving 
symbolic learning through knowledge sharing. A recent practice in Data Mining is the use of 
collaborative multi-agent systems. These systems are usually based on agents which interact 
with each other and with the environment, cooperating to solve a problem. 

Data Mining is a powerful technique that makes use of Machine Learning algorithms for 
knowledge extraction. However, no algorithm can be the best choice in all possible domains. 
Each algorithm contains an explicit or implicit bias that leads it to prefer certain 
generalizations over others [7]: the strong point of one can be the other’s weakness. Therefore, 
different Machine Learning techniques applied to the same dataset hardly generate the same 
result [21]. For example, figure 1 shows the result of two different Machine Learning 
algorithms (algorithm A and B) applied to the same dataset with two distinct concepts, x and 
y. The A tool constructed an accurate model for concept x and a weak description for concept 
y. On the other hand, the B too builds a precise model for concept y and failed in the concept 
x description. In general, the combination of inductors increases the accuracy by reducing the 
bias. This integration aims at overcoming limitations of individual techniques through 
hybridization or fusion of various techniques. These ideas have lead to the emergence of many 
different kinds of system architectures. 

Our aim is to evaluate the possibility of improving the classification with the MASKS 
(Multi-Agent System based on Knowledge Sharing) environment, which combines inductors 
in a multi-agent system with autonomy to improve individual models through knowledge 
sharing. Besides, we describe the environment architecture and compare the first results 
driven from its use. 

This paper describes a data mining effort concerning molecular biology data. The data was 
gathered from the P53 [11] database gene mutations in human tumors and cell lines. In order 
to improve the general accuracy, a method called Rescaling [12] was applied to the data prior 
the MASKS environment. 

The paper is organized as follows. Section 2 describes some related work regarding Data 
Mining on biological data and Data Mining using multi-agent systems. Section 3 gives an 
overview on agents. Section 4 describes the MASKS environment architecture. Section 5 
illustrates the application of this environment using a portion of P53 database. Section 6 
discusses future work, and Section 7 concludes the paper. 
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Figura 1 - Learning bias of  algorithm A and B 
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2 Related Work 

The application of Data Mining techniques in biological databases is one of the most 
exciting activities in modern biology because there is much unexplored knowledge in the data. 
There are many works describing fair good results obtained from its use in molecular biology 
domain. In [3], two clustering techniques (k-means algorithm and hierarchic grouping) are 
matched to assemble genes with similar phenotypes; in [19], the Open Reading Frames (ORF 
or DNA sequences which contain nucleotides marking the beginning of a gene but not its end) 
of a yeast are classified in diverse functional categories; in [8], a Bayesian system is used to 
anticipate the place where the proteins became active in the cell; in [2], a decision network is 
constructed to classify the proteins in soluble or not soluble; and in [15], the C4.5 algorithm is 
used to generate rules for automatic annotation of Keywords regarding proteins. 

A recent practice in Data Mining is the use of collaborative multi-agent systems. Some 
examples are given in [20, 22]. JAM [20] is a multi-agent system for mining distributed data. 
There are two agent types - the learner and the meta-learner. The learner has a Machine 
Learning algorithm - each learner applies its technique separately and brings the result to be 
combined by the meta-learner. The CILT system [22] is based on agents with different 
Machine Learning algorithms that collaborate with each other to improve the classification 
task. Due to this collaboration, the agents generate new data and add it to the training file, 
which is further presented to the agents for the sake of classification improvement. 

As for the use of Multi-agent systems, in [6] a prototype is described aiming at automating 
the annotation of a virus sequence. This work is based on Multi-agent information gathering: 
search, filtering, integration, analysis, and presentation of the data to the user.  

3 Overview on Agents 

For decades Artificial Intelligence has focused on intelligent problem-solving concerning a 
single entity, be it a robot or a human being, an expert system or a vehicle. However, none of 
theses entities can be treated in an isolated fashion. In no way they may be regarded as a 
single unit, complex or simple. To be able to open a door, a robot has to accomplish at least 
two main tasks: image processing and planning, both being closely affected by the presence of 
other dynamic entities in the environment. Besides functional distribution of tasks among 
entities, the spatial distribution of several components of the system has also been one of the 
main motivations for developing distributed problem-solving frameworks. 

In real world applications, those entities and components may not be considered as a 
whole, since the complexity may increase to intractable levels. However, decomposing the 
tasks and ultimate goals of those entities implies that, in the majority of cases, each part has 
to interact with others. How helpful and efficient these interactions might be has, in fact, 
motivated the first researchers in the field which is now called Distributed Artificial 
Intelligence (DAÍ). 

DAÍ is commonly associated with the term “society of agents”, meaning a network of 
problem-solvers where each is autonomous and has particular abilities, but cannot solve the 
overall problem individually due to a lack of resources, information, or expertise. 

There is no widely accepted definition for agent, the term itself is related to the Latin word 
“agere”, or “to do”. In this work we assume that an intelligent agent is software that can take 
independent actions on behalf of a user’s goals, without explicit intervention by this user. 



4 The Agent-Based Cooperative Learning 

The MASKS environment groups different symbolic inductors encapsulated in agents in 
order to classify data. The model is build over a statistical analysis of a number of instances 
that describe the predetermined categories or concepts. If the model is considered acceptable, 
then it is used to classify future instances.  

The MASKS environment defines the methods of interaction between the participants and 
the rules exchanged between the agents. The environment contains the learning problem to be 
solved by its members.  

The environment goal is to improve the individual result and to make sure that all the 
learners benefit from the interaction. The cooperative agent-based environment success is 
measured by the improvement of the average accuracy in the knowledge base of each agent. 

The environment architecture has one component called Splitter, which separates the input 
set in two disjoints samples: one for learning and the other for final evaluation. This 
component is optional. 

4.1. Agent Architecture 

The agent architecture consists of five components depicted in Figure 2.  
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Figure 1 - Agent architecture 

 
• Learning element: contains the rule induction technique. In the present work, the 

learning element contains three of these techniques: CN2 [4], C4.5 [18] and PART [10]. 
CN2 and PART approaches extract rules to describe the concepts contained in the data 
while C4.5 produces a decision tree. 



• Performance element: controls, monitors and guides the learning element progress. 
It is responsible for the data input/output between the agent itself and between the agent 
and the environment. 

• Knowledge Base element: stores the rules generated by the learning element 
approved by the Evaluation element.  

• ModelMerge element: has a role similar to a knowledge base. The ModelMerge 
element stores other agents’ best rules together with the agent’s own rules. 

• Evaluation element: calculates the rules reliability. This is the element that decides 
whether or not to store the rules produced by the Learning element or those delivered by 
the Performance element.  

4.2. Individual Learning 

As learning happens in two stages, the first one is dedicated to the individual learning. The 
input here is the pre-processed training set and the configuration set. After that, the agent 
applies its rules inductor to the examples. 

The objective of the individual learning is to create an individual domain model. This 
model is composed of rules approved by the Evaluation component in order to achieve a 
compact result. 

As soon as the individual learning is over, the rules created are evaluated using the test file 
(data that had not been used to generate the model). The Evaluation element measures the 
quality of each rule by executing the CN2 rule evaluation function, and stores those that are 
equal or better than the threshold (informed in the configuration file) to the agent knowledge 
base. This function estimates the rule accuracy by applying the Laplace expected error 
estimate (Formula 1). 

 
LaplaceAccuracy = (TP + 1)/(TP + FP + K) (Formula 1) 
 
The formula depends on TP (true positives which means the number of examples correctly 

covered by the rule), FP (false positives which means the number of examples wrongly 
covered by the rule) and K (the number of classes in the domain). 

Most of the time, the individual learning stage produces a rule set with well described 
concepts along with poor described ones. This happens due to the algorithm heuristics applied 
to the data for extracting knowledge.  

Each Machine Learning algorithm that induces symbolic classifiers makes use of a proper 
syntax to describe the induced model. Since in the cooperative learning stage the agents will 
look for better rules, it is necessary to have them transformed into the same format. The 
transformation process takes place after the agent applies its algorithm to the training file, 
prior the evaluation step. 

The format adopted in this work is called PBM [17] which look like this: if <condition> 
then <concept = Ci>. The PBM format has a library that converts some of the most common 
Machine Learning symbolic algorithms to its proper format. The transformation process 
followed by the agents is depicted in Figure 3. 
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Figure 2 - Transformation process 

4.3. Cooperative Learning 

The goal of the cooperative learning is to improve the quality of the result. This stage input 
consists of the knowledge bases that store the knowledge obtained during the individual 
learning. 

The cooperative learning consists of two further steps. During the first one, a agent queries 
other agents’ knowledge bases. The first agent to start the interaction is the one that got the 
poorest overall accuracy (measured by the number of examples correctly classified by the 
agent’s model). The agent searches for its equivalent rules with better quality. The rules that 
fill this requisite are added to the agent ModelMerge component. Each agent repeats this 
process from the poorer to the richer overall accuracy. We say that a rule is equivalent to 
another one when the two describe the same concept and the attributes used for them overlap. 
This way, a high quality  rule is added to the agent’s ModelMerge component either when it 
is similar, or overlaps, subsumes, or is in conflict with a low quality rule. For example, 
consider the rules R1 and R2 that describe concept C. The R1 rule contains the attribute-value 
test for attributes x and y, while the R2 rule includes tests for attributes x and z [22]. We than 
say that these two rules are related or equivalent. 

When the communication ends, the rules taken from the knowledge base that were not 
changed are copied in the ModelMerge component. At this moment, each agent has two 
distinct models about the problem domain. It is necessary to evaluate the newest one which is 
stored in the ModelMerge component.  

The agent incorporates the one (ModelMerge or Knowledge Base) that covered the highest 
number of instances from the test file and this becomes the final model (for that agent). The 
output generated by the environment is the best agent model at all.  

4.4. Environment Implementation 

The MASKS environment provides the definition of the parent class (Figure 4). Each 
Machine Learning algorithm is defined as a subclass of the parent class. The parent class 
provides the definitions that make the communication between the learner agents possible, 
and between the environment and its population of agents.  
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Figure 3 - Class Hierarchy of MASKS environment 

After describing the approach used to formulate the agent-based cooperative learning 
environment, we next show an application to the bioinformatics domain. 

5 Application of the Environment 

This section describes the application of the environment as introduced in Section 4, to 
P53   database [11]. This database contains data about mutated p53 gene from cancer patients. 
This gene encodes a cancer-inhibiting property. The inactivation of p53 by mutation leads to 
the development of human cancer. The aim of the IARC p53 mutation database is to provide a 
tool to classify, sort, retrieve, compare and analyze these mutations in order to generate 
hypotheses on the natural history of human cancer. 

The data collection was done in April 2002 by means of the International Agency for 
Research on Cancer (IARC) web site (http://www.ibiblio.org/dnam/des_p53.htm). This 
version (June 1997) contains 6271 records organized into 26 attributes.  

The MASKS environment consisted of three agents, namely CN2-Agent, C4.5-Agent and 
PART-Agent. Each agent received the training set and executed the inductive learning step, 
followed by the evaluation against the test set. From the original database, we chose 4 types of 
cancer and 13 attributes that presented significance for the experiment. Therefore our data 
was reduced to 2080 records, divided into Test and Training set with 696 and 1384 lines 
respectively.  

The result was that the set of rules produced by the agents was quite poor. Table 1 shows 
the initial rule set accuracies and sizes of each agent evaluated against the test set. The rule 
set produced by the CN2-Agent had the highest overall accuracy (45.8%) followed by the 
PART-Agent (45.68%). The C4.5-Agent got the worst results because it produced a large 
number of rules and a low overall accuracy (43.82%). The meager results inspired us to use 
the Rescaling method prior the MASKS environment. 

Rescaling consists of applying algorithms in sequence where the output of an algorithm is 
used as input to the next. The aim would be to use the estimated probabilities determined 
from a learning algorithm along with the original data as input to a second algorithm (in this 
case it will be the MASKS environment). 

In order to do it, both files (Training and Test files) were presented to the Naive Bayes 
algorithm [9]. This algorithm makes use of the Bayes theorem to calculate the probability of 
each class that appears in the training set. The model generated by the Naive Bayes was used 
to compute the probability of whether or not the example belongs to the class that appears as 
its label. 



The second stage, model validation, follows the individual model construction. It consists 
in translating each rule into the PBM format (Table 6) and then measuring its quality against 
the test file. The rules produced by them had an accuracy increase comparing with the first 
mining. From overall accuracy around 45% (Table 1) we have got 53% (Table 4). Again the 
CN2-Agent had the highest overall accuracy (54%), followed by the PART-Agent (52.87%) 
and C4.5-Agent with 51.72%. The rule format induced by each agent is shown in table 5. 

When the communication (explained in Section 3.3) begins, the agent with the poorest 
overall accuracy (C4.5-Agent) starts by asking its colleagues if at least one of them has rules 
for class “Breast carcinoma” (for instance). If yes, it asks for its quality. If the agent notices a 
superior quality in it, then it is necessary to check if the rules are related (explained in Section 
3.3). If yes the agent adds the new rule to its ModelMerge component. 

For example, Agent-CN2 rule for the “Breast carcinoma” cancer has a higher accuracy 
(according LaPlace depicted in Section 4.2), than the one generated by Agent-C4.5. As each 
agent has the goal of improving their knowledge by acquiring better rules, in the “Breast 
carcinoma” case, Agent-C4.5 adds the rule to its ModelMerge component. All agents repeat 
this process until there are no more related rules to be exchanged.  

Cooperative learning thus improved the quality of the knowledge contained in the 
knowledge base of each agent. Table 5 shows the evaluation of the three agents before and 
after cooperation. The collaborative learning stage led to an improvement of each agent 
model. The PART-Agent received 8 rules from the others agents – 3 rules from CN2-Agent 
and 5 from C4.5-Agent. The CN2-Agent also received 8 rules - 4 from PART-Agent and 4 
from C4.5-Agent. The last agent, C4.5 was the one to receive a higher number of rules: 6 
rules from the CN2-Agent and 10 from the PART-Agent. The resultant model given by the 
environment was the one from CN2-Agent.  

 

Table 1 – Overall Rule set Accuracies and Rule set sizes of each agent against the test set 

CN2 C4.5 PART 
Accuracy Rules Accuracy Rules Accuracy Rules 

45.8% 266 43.82% 750 45.68% 104 

 

Table 2 - Rule generated for the cancer Breast carcinoma 

CN2 C4.5 PART 
IF    CPG_SITE = Yes 
  AND Probabilidade_S < 0.51 
  AND 0.49 < Probabilidade_N < 0.50 
THEN  class = Breast carcinoma   

Probabilidade_S <= 0.6422 
|   Probabilidade_S <= 0.519 
|   |   CODON_MUT = ATG: Breast carcinoma 

 

Probabilidade_S <= 0.519 AND 
CODON_MUT=ATG: Breast carcinoma 

 

Table 3 - PBM format example of the cancer Breast carcinoma 

PBM Format 
CN2 C4.5 PART 

IF    CPG_SITE = Yes 
  AND Probabilidade_S < 0.51 
  AND 0.49 < Probabilidade_N < 0.50 
THEN  CLASS = Breast carcinoma 

IF Probabilidade_S <= 0.6422 
AND  Probabilidade_S <= 0.519 
AND CODON_MUT=AAA: 
THEN CLASS = Breast carcinoma 

IF Probabilidade_S <= 0.519 AND 
CODON_MUT= ATG 
THEN CLASS = Breast carcinoma 



Table 4 - Overall Rule set Accuracies and Rule set sizes of each agents against the test set with 
Probabilities added to it 

CN2 C4.5 PART 
Accuracy Rules Accuracy Rules Accuracy Rules 

54% 217 51.72% 372 52.87% 149 
 

Table 5 - Total Result 

CN2 C4.5 PART 
Before 

Cooperation 
After  

cooperation 
Before  

cooperation 
After  

cooperation 
Before  

cooperation 
After  

cooperation 
54% 55% 51.72% 53.72 52.87% 53.87 

6 FUTURE WORK 

The present version of the MASKS environment is still under construction (communication 
is just simulated). 

The communication among the agents will be implemented using KQML. Actually, we 
will  develop the communication using the SACI Tool (Simple Agent Communication 
Infrastructure) [13] because it provides a transparent way of doing it following the KQML 
specification. SACI enables distributed agents to communicate in an easy way. The message 
content will be expressed in the SQL language once the agents’ knowledge bases will be 
constructed using MySQL [16]. A message example is shown below. 

 
(ask-one 
:ontology ML-ontology 
:language SQL 
:receiver  CN2-agent 
:sender C4.5-agent 
:reply-with q1 
:content “Select rules from CN2-agent.knowledge_base where concept = “Breast 

carcinoma”) 
 
Initially, four agents will be part of the MASKS environment – Agent-C4.5, Agent-CN2, 

Agent-Ripper [5] and Agent-T2 [1]. These Machine Learning algorithms are found in the 
MLC++ library. The MLC++ [14] library was developed by Stanford University to facilitate 
the Machine Learning algorithm use. 

7 CONCLUSION 

The target approach - intersection of distributed artificial intelligence and machine 
learning – provides a promising technology to address the complexity of modern information 
environments. 

This paper describes the architecture of the MASKS environment that consists of several 
learning agents to induce rules from training examples. Agents cooperate to improve their 
knowledge by sharing it with others to achieve better results. The main goal of this 
architecture is to preserve the learning bias of each Machine Learning algorithm, just 
improving the misleading rules by agent cooperation. 



We have described an application in bioinformatics whose data was obtained from the P53 
database. Although the results were poor from the knowledge discovery point of view, we 
were able to highly improve the accuracy by joining techniques – Rescaling method along 
with MASKS environment.   
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