
Title: Agent’s Belief: A Stochastic Approach 

Author : Nuno Cavalheiro Marques  
Author : Veska Noncheva: 

 
Postal Address: Departamento de Informática, FCT/UNL Quinta da 
Torre - 2829 -516 CAPARICA, PORTUGAL. 
Telephone: +351- 212948536 (E. 10714) 
Fax: 212948541 
email : nmm@di.fct.unl.pt 
 
Abstract:  In this paper we present a theoretical model based on 
Bayesian Networks for evaluating agent’s belief. We model the agent’s 
belief as a threshold function of agent’s certainty. The main problem is 
that agent’s certainty is unobservable. This model is based on results 
from different tests. A propagation algorithm is presented. We also 
discuss an example for determining statistical agent’s belief in a 
probabilit y model. Finally, a proposal for application of our model to 
natural language subcategorization purposes is made.   

Keywords: Agent’s Belief, Statistical Tests, Weak Monotonous 
Bayesian Rule, Bayesian Network, Propagation Algorithm. 

Topics: Belief Revision, Reasoning under Uncertaninty, Natural 
Language Processing, Multi -Agent Systems. 



Agent’ s Belief: A Stochastic Approach 

Veska Noncheva1,2     Nuno Cavalheiro Marques2 

1 University of Plovdiv, Faculty of Mathematics and Informatics; 
nonchev@plovdiv.techno-link.com 

2 CENTRIA - DI- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa; 
 nmm@di.fct.unl.pt 

Abstract. In this paper we present a theoretical model based on Bayesian 
Networks for evaluating agent’s belief. We model the agent’s belief as a 
threshold function of agent’s certainty. The main problem is that agent’s 
certainty is unobservable. This model is based on results from different tests. A 
propagation algorithm is presented. We also discuss an example for 
determining statistical agent’s belief in a probabilit y model. Finally, a proposal 
for application of our model to natural language subcategorization purposes is 
made.   

1   Introduction 

One of the main goals of Artificial Intelli gence is to create agents. These agents 
embody expertise and intelli gent behaviour. The states of the agents consist of 
components such as knowledge, belief, desire, intention, and obligation. Until now, 
most well known agent’s belief work is based on logical approaches [2]. 

In this paper a general stochastic model for determining the agent’s belief is 
proposed. This model has the following features:  

• It is necessary to choose one of several alternative agent’s belief states 
determined in advance. 

• The agent’s belief problem is formulated through the stochastic terms. 
One of the random variables, being of particular interest, is unobservable.  

• A numeric measure called utilit y, measuring the profit of every agent’s 
belief state, is given and the aim is the expected utilit y to be maximized.  

One particular case of the problem under discussion is considered in [6]. Both 
Bayesian and utilit y Networks are used to present agent’s belief. A possible 
application of this work to statistical subcategorization [3,4] learning is discussed.    

The agent’s belief can be presented through a threshold function of the degree of 
the agent’s certainty (see [5]). However, the agent’s certainty is unobservable, and 
because of that testing is needed. The test results are a kind of estimators of the degree 
of agent’s certainty. The information from the tests is used to make decision about the 



agent’s belief. Furthermore, the higher result values received from the first tests will 
result in lower requirements for the next test results to be obtained.  

We are to discuss the decision-making rules having a monotonous form. For 
instance, the agent is certain that a statement is true, if the value of the variable, 
representing the certainty, is bigger than the threshold value preliminary determined. 
The agent, on the other hand, rejects the statement, if the value of the variable is 
smaller than the threshold value. 

2 General Stochastic Model of the Agent’ s Belief 

The general formulation of the problem for determining the agent’s belief state is 
following: 
 

1. Let Xi , i=1,2,…n be continuous random variables defined on sample 
spaces nii ,...,1],1,0[ ==Ω , which random variables can be observed. We 

interpret Xi as a test result and X1,X2,...,Xn as a sequence of the results from the 
tests.  

2. Let T be a continuous random variable defined on ],1,0[=Ωt  which 

cannot be observed and it is being interpretted as the agent’s certainty.  
3. The Bayesian model of the probabilit y structure is known; consequently, 

the joint probabilit y distribution f(x1, …, xn, t) of the random variables X1,…,  

Xn,T is known, as well . 
4. The finite set of the possible agent’s belief states D is known, too.  
5. The utilit y function U(t,d): ]1,0[→×Ω Dt  is also known. 

A decision-making rule is the ),...,( 1 nxxδ  rule, which for each possible 

realization ),...,( 1 nxx  of the random vector ),...,( 1 nXX   determines which state 
�

j∈D, j=1,…,k, will be acquired by the agent’s belief. That is, the decision-making 
rule is a function of random variables nXX ,...,1  defined on nΩ××Ω ...1

 and with 

range space D. The goal is to find a decision-making rule, which is to maximize the 
expected utilit y.  

 
If there are several decisions, resulting in one and the same maximal expected 

utilit y, then we can consider each of these decisions as optimal. In this case the 
randomised decision-making rules are acceptable, but they have no priorities.   

It is intuitively obvious that the high value of the result from test i will result in low 
requirements towards the result from test j, when j>i. That is, the preliminary obtained 
information influences the decision-making rules. The decision-making rules in which 
the decisions from the test j are functions of the obtained result from the test i, i<j, are 
called weak rules.  

It is natural to discuss the decision-making rules, having a monotonous form, i.e. 
the rules with threshold points ,,...,2,1, nix c

i = forming partitions of the 



sample spaces ]1,0[=Ω i
 in the following manner niAA iii ,...,1, =+=Ω , where 

}:{ c
iiii xxxA <=  and }:{ c

iiii xxxA ≥= . Therefore, the problem for determining 

the agent’s belief state means that we are to find n threshold points 

,,...,2,1, nix c
i =  for each Xi, ,,...,2,1 ni = which points are optimal in 

accordance with the Bayesian approach. 
Hence the purpose is to find a weak monotonous Bayesian rule for determining the 
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3. Example 

Statistical inferences are conclusions for different characteristics of the population, 
being made on the basis of observations and assumptions for the population. The most 
popular and correct form of statistical inferences is the statistical hypothesis.  

The assumptions may be for independence, symmetry, normality, stationarity, 
etc. The assumptions, being strict mathematical notions, are either incredibly close to 
our intuitive concepts for independence, stationarity, or have a proper interpretation in 
the real world.  

However, as all mathematical notions have shortcomings, the assumptions have 
theirs as well . Strictness is probably the main one. This means that the requirements 
are so strict, that practically the assumptions cannot be verified. 

To put it simply, when we say that two events are independent or the 
population distribution is normal, we put much more belief in these assumptions, than 
we could mathematically verify.                                               

Consider statistical agent’s belief in the probabilit y model i.e. in the type of 
population distribution. 

In order to form its belief in the type of population distribution, the agent can 
start with a statistical test for symmetry. When the hypothesis for symmetry cannot be 
rejected, the agent has to continue with tests for normality. Usually a Goodness-of-fit 
test is first used and after that the user opinion is asked. The results from these three 
tests are respectively 1-p1, 1-p2, where p1 and p2 are the p-values of the statistics of the 
two statistical tests, and the degree of the user certainty of normality, represented as 
numbers in the interval [0,1]. 

Designate with X1 the observed value 1-p1, where p1 is p-value of the statistics 
of the test for symmetry. Designate with X2 the observed value 1-p2, where p2 is p-
value of the statistics of the test for normality. Designate with X3 the degree of the 
user’s certainty of normality. Designate with T the agent’s certainty of normality, 
which cannot be observed. 

Assume that X1, X2, X3 and T are continuous random variables with a joint 
probabilit y density function f(x1,x2,x3,t). 

The decision rule ),,( 321 xxxδ  determines the state aj, j=0,1,2,3, of the agent’s 

belief for each possible realization ),,( 321 xxx  of the random vector ),,( 321 XXX .  

The weak decision rule δ  in this case has the form: 



]1,0[]1,0[}),,(:),,{( 10321321 ××== Aaxxxxxx δ  

]1,0[)(}),,(:),,{( 1211321321 ××== xAAaxxxxxx δ  

),()(}),,(:),,{( 2131212321321 xxAxAAaxxxxxx ××==δ  

),()(}),,(:),,{( 2131213321321 xxAxAAaxxxxxx ××==δ , 

where 1A and 1A  are the sets of values of the test leading respectively to the 

rejection and to the acceptance of the statement for symmetry, )( 12 xA  and 

)( 12 xA are sets of values of the pre-test leading respectively to the rejection and to 

the acceptance of the statement for normality, ),( 213 xxA and ),( 213 xxA are sets 

of values of the post-test leading respectively to the rejection and to the acceptance of 
the statement for normality. 

The weak monotonous rule for making a decision about the agent’s belief is 
defined as follows: 

             

),,( 321 xxxδ  = 

 
 

 

where ccc xxx 321 ,,  are the threshold values for 321 ,, XXX , and aj , j=0,1,2,3 are the 

following agent’s belief states: 
• a0  - the agent rejects the assumption for the symmetry of the distribution, 

describing the population under investigation. In the process of the statistical 
analysis the agent will use the median as the best estimate of the “center” of the 
distribution since the mean is strongly influenced by outliers in the data. 

• a1   - the agent rejects the assumption for normality of the distribution. It will 
make only use of the assumption for symmetry in the statistical analysis. 

• a2  -  the agent supposes (suspects) that the distribution of the population being 
investigated is normal. In the process of the statistical analysis it will make use 
only of tests which are not sensitive to moderate deviations from the assumption 
for normality. An example of such a robust test is the t-test. 

• a3 – the agent convinced that the distribution describing the population is normal. 
It will also use statistical tests, which are sensitive to deviations from the 
assumption for normality. Such tests are, for example, Pearson’s, Fisher’s and 
Bartlett’s tests. 

Assume that utilit y structure has the following form: 
 

         
                    u(t)  =  
 

a0,   if   ])1,0[],1,0[, 3211 ∈∈< XXxX c  

a1,   if   ]1,0[),(, 312211 ∈<≥ XxxXxX cc  

a2,   if   ),(),(, 213312211 xxxXxxXxX ccc <≥≥  

a3,   if   ),(),(, 213312211 xxxXxxXxX ccc ≥≥≥ , 

 

u1(t),   if   a0 

u2(t),  if   a1 

u3(t),  if   a2 

u4(t), if   a3, 



 
where ui(t), i=1,2,3,4 are continuous, monotonic and bounded functions. 
 It is well known that if the data is lognormal, that means that it will be normally 
distributed after a log transformation. Therefore, this model could be improved by 
adding possibilit y for data transformation, thus trying to obtain normally distributed 
responses. 
 The aim is to find a weak monotonous Bayesian rule for determining the 
statistical agent’s belief in the probabilit y model. That means to find the threshold 

points ccc xxx 321 ,, , which are optimal in accordance with the Bayesian approach.   

4. Data Structures  

Let us assume that X={ X1, X2, …, Xn}  is a finite set of continuous random 
variables. The event tree is a binary treelike structure having the following properties: 

• the nodes and the leaves are mapped events. 
• the sample space Ω  is mapped in the root. 
• each node has 0 or 2 children. 

• If nodes lA  and rA  are respectively left and right  child  of iA node, then 

lA  maps the event }{ c
ll xX < , whereas rA  maps the complementary event 

}{ c
ll xX ≥ . Thus, we may designate the following equation: 

rl AA = = }{ c
ll xX ≥ . 

The event tree is in canonical form if the indices of the random variables - 
associated with the nodes - aligned from the tree root to the leaves and from left to 
right, coincide with the first n natural numbers. From now on we are to consider event 
trees in canonical form only.  

The event tree, presenting the conditions of the decision rule from Example is 
represented in Figure 1. 

The path that goes from the first level to a leaf in the event tree is called a 
factor.  
 We must bear in mind that we are to interpret the factor as events 
simultaneously occurring, i.e. as an intersection of the factor's events.  

Let F={ Fi, i=1,2,…,n+1} be the set of the factors in the event tree.  It presents 
the decision rule conditions. For convenience's sake we are to number the factors in 
event tree from left to right.  

It is with each factor Fi that one of the agent’s belief states is associated. In 
such case we say that the set of  agent’s belief states is associated with the set of  
factors from the event tree. The decision-making rule for the agent’s belief state can 
be presented by the above mentioned sets. 



 
 

 
Further on, we will associate a utilit y function ui with each factor Fi, Further 

Further on, we will associate a utilit y function ui with each factor Fi, i=1,2,…,n+1, 
which is to say that each leaf from the event tree is associated with a utilit y node. 
Therefore, a set of utilit y nodes is associated with the set of factors in the event tree. 
Consequently, a set of factors, as well as, a set of utilit y functions is associated with 
the event tree.  

The pair (F, U), where F is the set of factors and U is the set of utilit y nodes - 
both associated with event tree - is called a utilit y network.   

5. Propagation Algor ithm 

We are now ready to present a propagation algorithm for generation of equations, 
whose roots are the optimal values nix c

i ,...,2,1, = . The theoretical 

backgrounds of this algorithm are given in [5]. 
Algorithm: An algorithm for generating symbolic integral equations. 

Input: 
• A utilit y network, associated with the event tree. 
•     A Bayesian network 

Output: n symbolic integral equations. 
Initialization: Each Ai leaf in the event tree is associated with two symbol variables 

as follows: 
 Ai.head:=U(Ai), where U(Ai) is the utilit y function, associated with Ai leaf, 

 Ai.tail :=φ, where φ  is the empty set. 
Steps: 

1. Find ),( ii AA  element with the greatest index i from the set of paired leaves, i.e. 

the leaves having the maximum level number in the event tree.  
2. Find )( iAψ  - the list of the random variables associated with Ai leaf, then find i – 

the index of the element with the greatest index from )( iAψ .  

3. Find the left hand of the equation: 

Fig. 1. Event tree from Example. 



      left:=E{ [ iA .head (T)-Ai.head (T)]/ )( iAψ } + iA .tail  - Ai.tail  

4. Generate the equation:  
      left =0 

5. Find  Ak=π( Ai) , which is the paired leaves parent ),( ii AA . If it turns to be the 

tree's root go to step 9. Otherwise designate ]1;[0 c
ii xA =  and find the 

random variables list )( kAψ = )( iAψ \Xi.  

6. If π( Ai)= kA , where π( Ai) is Ai node’s parent, then accept   kA .head:= 

Ai.head,                 

     kA  .tail  := ∫
0

iA

 { left} .f i ( xi / )( kAψ )d xi  + iA  .tail ,  

      else accept      Ak.head:= Ai.head,                                                   

     kA  .tail  := ∫
0

iA

 { left} .f i( xi/ )( kAψ )d xi   + iA  .tail  

7. Remove iA  and iA  leaves.                      

       Hence, we have articulated an equation for xi

c
 and a new utilit y network.  

8. Repeat the steps above beginning with Step 1. 
9. End. 

The problem for decision making about the agent belief state, presented in 
Example, may be represented by both Bayesian network and the utilit y network in 
Figure 2. Then the equations, generated by means of Propagation algorithm are: 

]/)()([ 112 xTuTuE − + ],/)()([{ 2123
0
2

xxTuTuE
A

−∫ + 

           

+ 0)/(}),/(],,/)()([ 212321332134
0
3

=−∫ dxxxfdxxxxfxxxTuTuE
A

 

],/)()([ 2123 xxTuTuE −

0),/(],,/)()([ 321332134
0
3

=−+ ∫ dxxxxfxxxTuTuE
A

 

0],,/)()([ 32134 =− xxxTuTuE  

 



 
 

6 Conclusions and Future work 

The conception of agent’s belief is a powerful abstraction and we are going to apply it 
in order to model the behaviour of an agent dealing with natural language processes. 
Statistical verb subcategorization is addressed in [3,4] by using loglinear modelli ng. 
One important problem in loglinear modelli ng is to find the most suitable model. We 
think that this problem can be stated in the framework of the agent’s belief theory here 
proposed.  In future work we will t ry to present the choice of the best loglinear model 
as an agent's belief in the goodness-of-fit of a loglinear model. 

[1] uses undirected graph theory to represent loglinear models that contain only 
single-factor and two-factor terms. Representation of loglinear models based on 
Bayesian networks will be the topic of another paper and it will allow automatically 
selection among several possible loglinear models for dictionary building [3,4]. This 
application will help us to devise both a practical application to our model and a new 
way to assign good estimates for the probabiliti es. In this way, statistical 
subcategorization will be improved by the agent’s belief model here proposed. 
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