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Abstract. In this paper we present a theoreticd model based on Bayesian
Networks for evaluating agent’s belief. We model the agent’'s belief as a
threshald function o agent’s certainty. The main problem is that agent's
certainty is unotservable. This model is based onresults from different tests. A
propagation agorithm is presented. We dso dscuss an example for
determining statistica agent’s belief in a probability model. Finaly, a proposal
for applicaion o our model to natural language subcaegorization puposes is
made.

1 Introduction

One of the main goals of Artificial Intelligence is to crede aents. These aents
embody expertise and intelligent behaviour. The states of the aents consist of
components such as knowledge, belief, desire, intention, and oHigation. Until now,
most well known agent’s beli ef work is based on logicd approaches[2].

In this paper a general stochastic model for determining the agent’s belief is
proposed. Thismodel has the foll owing feaures:

e |t is necessary to choose one of several alternative agent’s belief states
determined in advance

 The gyent’s belief problem is formulated through the stochastic terms.
One of the random variables, being of particular interest, is unohservable.

A numeric measure cdled utility, measuring the profit of every agent’s
belief state, is given and the dm isthe expeded utility to be maximized.

One particular case of the problem under discusdon is considered in [6]. Both
Bayesian and utility Networks are used to present agent’s belief. A possble
application of thiswork to statisticd subcategorizaion [3,4] leaningis discussed.

The agent’s belief can be presented through a threshold function of the degree of
the aent’s certainty (see[5]). However, the agent’s certainty is unobservable, and
becaise of that testing is needed. The test results are akind of estimators of the degree
of agent’s certainty. The information from the tests is used to make dedsion about the



agent’s belief. Furthermore, the higher result values receved from the first tests will
result in lower requirements for the next test results to be obtained.

We ae to discuss the dedsion-making rules having a monotonous form. For
instance, the agent is certain that a statement is true, if the value of the variable,
representing the cetainty, is bigger than the threshold value preliminary determined.
The aent, on the other hand, rejeds the statement, if the value of the variable is
small er than the threshold value.

2 General Stochastic Modél of the Agent’ s Beli ef

The general formulation of the problem for determining the agent’s belief state is
following:

1. Let X, i=1,2,...n be mntinuows randam variables defined on sample
spaces Q, =[0]],i =1,...,n, which randam variables can be observed. We

interpret X as atest result and X,,X,,... X as a seguence of the results from the
tests.
2. Let T be a ontinuows randam variable defined on Q, =[0], which

cannat be observed and it is being interpretted as the agent’s certainty.

3. The Bayesian moddl of the probability structure is known; consequently,
the joint probability distribution f(x,, ..., x, t) of the randam variables X,,...,
X, Tisknown, aswell.

4. Thefinite set of the pasdble ggent’ s belief states D is known, too.

5. The utility functionU(t,d): Q, xD - [0]] isaso knawn.

A dedsionrmaking rule is the 5(X1,...,Xn) rule, which for ead possble

redizaion (X,...,X,) of the random vedor (X,,...,X,) determines which state

a0D, j=1,...k, will be aguired by the agent’s belief. That is, the dedsion-making
rule is a function of random variables X,,...,X defined on Q, x...xQ_ and with

range spaceD. The goal is to find a dedsion-making rule, which is to maximize the
expeded utility.

If there ae several dedsions, resulting in one ad the same maxima expeded
utility, then we can consider eat of these dedsions as optimal. In this case the
randomised dedsion-making rules are accetable, but they have no priorities.

It isintuitively obvious that the high value of the result from test i will result in low
requirements towards the result from test j, when j>i. That is, the preliminary obtained
information influences the dedsion-making rules. The dedsion-making rules in which
the dedsions from the test j are functions of the obtained result from the test i, i<j, are
cdled weak rules.

It is natural to dscussthe dedasion-making rules, having a monaonots form, i.e.

the rules with threshold points x °,i = 1,2,..., n, forming partitions of the



sample spaces Q. =[0,] in the following manner Q, = A +K,i =1...,n, where
A ={x :x <x°} and A ={x :x = Xx°}. Therefore, the problem for determining
the aent's belief state means that we ae to find n threshold pdnts
X ,i=1,2,.., n, foreah X, i =1,2,..., n, which points are optimal in

acordance with the Bayesian approach.
Hencethe purposeisto find a weak monaonous Bayesian rule for determining the
agent’s belief state.

3. Example

Statisticd inferences are mnclusions for different charaderistics of the population,
being made on the basis of observations and assumptions for the population. The most
popular and corred form of statisticd inferencesisthe statisticad hypaothesis.

The ssaumptions may be for independence, symmetry, normality, stationarity,
etc. The asumptions, being strict mathematicd notions, are d@ther incredibly close to
our intuitive mncepts for independence, stationarity, or have aproper interpretation in
the red world.

However, as all mathematicd notions have shortcomings, the esaimptions have
theirs as well. Strictnessis probably the main one. This means that the requirements
are so strict, that pradicdly the assumptions cannot be verified.

To put it simply, when we say that two events are independent or the
population distribution is normal, we put much more belief in these asumptions, than
we ould mathematicdly verify.

Consider statisticd agent’s belief in the probability model i.e. in the type of
population distribution.

In order to form its belief in the type of popuation dstribution, the agent can
start with a statisticd test for symmetry. When the hypahesis for symmetry canna be
rejeced, the ayent has to continue with tests for normality. Usually a Goodressof-fit
test is first used and after that the user opinion is asked. The results from these three
tests are respedively 1-p,, 1-p,, where p, and p, are the p-values of the statistics of the
two statisticd tests, and the degree of the user certainty of normality, represented as
numbersin the interval [0,1].

Designate with X, the observed value 1-p,, where p, is p-value of the statistics
of the test for symmetry. Designate with X, the observed value 1-p,, where p, is p-
vaue of the statistics of the test for normality. Designate with X, the degree of the
user's certainty of normality. Designate with T the aent’s certainty of normality,
which canna be observed.

Asame that X, X,, X, and T are mntinuows random variables with a joint
probability density function f(x,,x,,x,,t).

The dedsion rule d(X,, X,, X;) determines the state &, j=0,1,2,3, of the ayent's

belief for eat possbleredizaion (X, X,, X;) of therandom vedor (X,, X,, X,).

The wes dedsion rule O inthis case has the form:



{(% %, %) 18(%, %, %;) = 8} = A x[01]x[01]
{0, %, %) 180X, %, %) = &} = A x A (x,) x[0/]

{0 %5, %) 1 8%, X, X5) =8 = A X A, (%) % A%, X,)
{0 %, %) 180X, %, %) =8k = A x A (%) X A%, %),

where Aland E are the sets of values of the test leading respedively to the

rgjedion and to the accetance of the statement for symmetry, Az(x1) and

AZ(Xl) are sets of values of the pre-test leading respedively to the rejedion and to

the accetance of the statement for normality, A;(X;, X,) and E(Xi, X,) are sets

of values of the post-test leading respedively to the rejedion and to the accetance of
the statement for normality.

The wed& monotonous rule for making a dedsion about the ayent’s belief is

defined as foll ows:

a, if X, <x;,X,0[01, X, 0[01])
a, it X, 2 X, X, <x5(x), Xs 0[0]]
a, if X, 2x7, X, 2x5(X), X5 <X5(%,%,)
a, it X, =2x7, X, 2x5(%), X5 =X (X,X%,),

0(%;, %, %) =

where X7, X;,%; are the threshold values for X, X,, X;, and & ,j=0,1,2,3 are the
following agent’ s beli ef states:

a, - the agent regjeds the aswumption for the symmetry of the distribution,
describing the popuation undyr investigation. In the process of the statisticd
analysis the ggent will use the median as the best estimate of the “center” of the
distribution sincethe mean is drongdy influenced by odliersin the data.

a; - the agent rejeds the asumption for normality of the distribution. It will
make only use of the assumption for symmetry in the statisticd analysis.

a, - the agent supposes (suspeds) that the distribution o the popuation keing
investigated is normal. In the process of the statisticd analysis it will make use
only of tests which are not sensitive to moderate deviations from the asumption
for normality. An example of such arobust test isthe t-test.

a,— the agent convinced that the distribution describing the popuationis normal.
It will aso use satisticd tests, which are senstive to deviations from the
assumption for normality. Such tests are, for example, Peason's, Fisher's and
Bartlett’ stests.
Asaume that utility structure has the following form:

u(®, if a
u(), if a
u(®, if a
), if a,

ut) =



where ui(t), i=1,2,3,4 are continuous, monotonic and baunded functions.

It iswell known that if the dataislognormal, that meansthat it will be normally
distributed after a log transformation. Therefore, this model could be improved by
adding possbility for data transformation, thus trying to oktain normally distributed
responses.

The am is to find a we& monotonous Bayesian rule for determining the
statisticd agent’s belief in the probability model. That means to find the threshold

paints X/, X5, X; , which are optimal in acmrdancewith the Bayesian approadh.

4. Data Structures

Let us asaume that X={X,, X,, ..., X} is a finite set of continuows randam
variables. The evant treeis a binary tredike structure having the following properties:
« thenodesand the leaves are mapped events.
+ thesample space Q ismapped in the roat.
+ eadt nockhasO or 2 children.

« Ifnodes A and A arerespedively left andright child o A, node, then

A mapsthe event { X, < X'}, wherezs A, maps the mmplementary event
{X,2x}. Thus, we may designate the following equation:

A =A={X 2x}.

The event treeis in canorical form if the indices of the random variables -
asciated with the nodes - aligned from the treeroot to the leares and from left to
right, coincide with the first n natural numbers. From now onwe ae to consider event
treesin canoricd form only.

The event treg presenting the andtions of the dedsion rule from Example is
represented in Figure 1.

The path that goes from the first level to a led in the event treeis cdled a
factor.

We must bea in mind that we ae to interpret the fador as events
simultaneously occurring, i.e. as an intersedion of the fador's events.

Let F={F,i=1,2,...,n+1} bethe set of the fadorsin the event tree It presents
the dedsion rule mndtions. For conveniences sske we ae to number the fadors in
event treefrom left to right.

It is with ead fador F, that one of the ajent’s belief states is asciated. In
such case we say that the set of agent’s belief states is associated with the set of
fadors from the event tree The dedsion-making rule for the agent’s belief state can
be presented by the dbove mentioned sets.
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Fig. 1. Event treefrom Example.

Further on, we will assciate autility function u, with ead fador F, i=1,2,...,n+1,
which is to say that ead led from the event treeis asociated with a utility noce.
Therefore, a set of utility nodes is asociated with the set of fadorsin the event tree
Consequently, a set of fadors, as well as, a set of utility functions is associated with
the event tree

The pair (F, U), where F is the set of fadors and U is the set of utility nodes -
both assciated with event tree- is cdled a utility network.

5. Propagation Algorithm

We ae now realy to present a propagation algorithm for generation d equations,
whose roots are the optimal vaues x°,i =1,2,.., n. The theoreticd
badgrounds of thisalgorithm are given in [5].

Algorithm: An algorithm for generating symbali ¢ integral equations.

Input:

e A utility network, associated with the event tree
e A Bayesian network

Output: n symbdlic integral equations.

Initialization: Each A led in the event treeis assciated with two symbal variables
asfollows:

A .head=U(A), where U(A) isthe utility function, asciated with A led,

A tail:=¢ where @ isthe enpty set.

Seps:
1. Find (A, A) element with the greaest index i from the set of paired leaves, i.e.

the leaves having the maximum level number in the event tree
2. Find (A) -thelist of the randam variables associated with A led, then find i —

theindex of the dement with the greaest index from (/(A).
3. Findtheleft hand d the equation:



|eft:=E{[K ‘head (T)-A head (T)]/QU(A)HK tail - A tail
4. Generate the eguation:
left =0

5. Find A=T( A) , which is the paired leaves parent (A ,K) If it turnsto be the
treés root go to step 9. Otherwise designate A, ° =[x,%:1] and find the
randam variableslist /(A )= (A)\X.

6. If 1 A):K, where T( A) is A node's parent, then accept R.head::
A head,
A tail ::J (lefty £, (x/ W(A))dx + A talil,
Ai°
else accet A head= A head,

A, tail ::J {lefty £ (x/ W(A))dx + A, tail
A°
7. Remove A and A leares,

Hence, we have aticulated an equation for Xic and a new utility network.
8. Reped the steps above beginning with Sep 1.
9. End
The problem for dedsion making abou the aent belief state, presented in
Example, may be represented by both Bayesian network and the utility network in
Figure 2. Then the equations, generated by means of Propagation algorithm are:

E[uz(T) _u1(T)/)ﬁ]+[{E[u3(T) = U, (T) /X, X, ]+

+ [ EU(T) U5 (1) 730 %, X T (% /3, X, )Ax} (X, /%) d%, =0
n
E[us(T) _uz(T)/Xi'Xz]

[ EIU(T) s (T) /% %, X1 T (%, %, %, )dlx; =0
A2

Eu,(T) —4,(T)/%, %, %] =0
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A ={X <n} JTll={X12xl}

A =0, cxt Ar={XE 5}
@ k/ \A
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Fig. 2 Bayesian network and the utility network from Example.
6 Conclusions and Future work

The conception of agent’s belief is a powerful abstradion and we ae goingto apply it
in order to model the behaviour of an agent deding with natural language processes.
Statistica verb subcaegorizaion is addressed in [3,4] by using loglinea modelli ng.
One important problem in loglinear modelling is to find the most suitable model. We
think that this problem can be stated in the framework of the agent’s beli ef theory here
proposed. In future work we will try to present the choice of the best loglinea model
as an agent's beli ef in the goodhessof-fit of aloglinea model.

[1] uses undireded graph theory to represent loglinea models that contain only
single-fador and two-fador terms. Representation of loglinea models based on
Bayesian networks will be the topic of another paper and it will allow automaticdly
seledion among several posshle loglinear models for dictionary building [3,4]. This
applicaion will help usto devise both a pradicd application to our model and a new
way to assgn good estimates for the probabilities. In this way, datisticd
subcategorization will be improved by the agent’s belief model here proposed.
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