
FEMAS: An Ontology-based Broker Architecture for
e-commerce Multi-Agent Systems.

Hugo Perez Santangelo

Facultad de Tecnología Informática
Universidad Abierta Interamericana

Buenos Aires, Argentina
hugo.perez@vaneduc.edu.ar

Abstract. The agents metaphor, expressed theoretically in the Distributed
Artificial Intell igence field of Multi-Agent Systems, has been awakening
the interest of the commercial software companies, because new emergent
technologies like e-commerce follow the same metaphor from the
consumer's perspective. Researchers in that field has been developing
useful models that can be used to construct commercial servers, but the
computational complexity problem and the lack of general models and
architectures, sometimes make the technological transfer between
researchers and commercial companies impracticable. State of the art is to
put the focus on ontologies in order to create more general business models,
but there are some software engineering issues related to the software
construction that ontology does not cover. This paper offers a proposed
solution to that problem, including conceptual aspects, and necessaries
methods to model commercial Multi-Agent Systems, using fuzzy logic and
evolutionary algorithms.

1. Introduction
AI technologies that can exploit ontologies through artificial reasoning are
beginning to appear at the heart of e-commerce platforms. A big effort is being
made to generalize ontologies, in order to make more powerful e-commerce
systems. The main purpose of ontology is to enable communication between
computer systems making it independent from the individual system technologies,
information architectures and application domain. In agent based systems, the
adoption of a shared ontology allows commerce agents to simultaneously
interoperate without misunderstanding and retain a high degree of autonomy,
flexibili ty and agility. Beyond ontology, there are some concerns related with this
scenario, that involve software engineering problems, and business model
problems, that can be summarised as:

• The complexity of the ontology of a marketplace can exceed that of the
largest and most sophisticated knowledge based systems.

• Products and services need to be represented with sufficient richness that
can be understood by all of the different viewpoints within industry (e.g.
the consumer, manufacturer, distributor, etc.).

• The system can offer interoperability, between the business systems of
the net market maker and their trading participants (agents).

• The system must be scalable, to cope with the ever increasing number of
market participants and to support the integration of new participants.

In essence, ontology can solve the vocabulary problem, and must be embedded in
a software system that can identify potential customers, pre-select them, and serve
them using a criterion based on particular business rules.
To meet all these requirements minimising computational complexity, server
resource consumption and lack of generalisation, a new perspective is necessary to
design and to modify e-commerce multi-agent systems [4, 7, 9]. This paper
proposes a method that includes a model and an architecture, which is based in
computational techniques that are successfully used to solve similar problems.

2. Scope and Domain Definition
The proposed method can be used in a broad range of multi-agent systems, but
this paper will focus on the requirements of e-commerce systems, because that
platforms follows a business rule based model strongly based in ontologies. For as
the information economy grows in significance in Europe and the USA, the
experts predict that ontologies will become increasingly significant to both new e-
commerce start-ups and long established businesses [7]. This means that there is a
big opportunity to Artificial Intelligence, especially multi-agent systems, to do a
jump in commercial platforms as the object of this work. Fuzzy Evolutionary
Multi-Agent System (FEMAS) was trying to achieve three objectives:

• To enhance and improve any existent e-commerce system, from simple
CGI applications, to more sophisticated platforms. This is called provider
system.

• To allow the provider system a more realistic and efficient use of
computational resources.

• To unify ontologies with business rules in a simple, robust and scalable
model.

3. FEMAS Conceptualisation

3.1. Conceptual and Foundational Aspects

FEMAS is the acronym for Fuzzy Evolutionary Multi-Agent System, it comprises
a conceptual model, an architectural design, and a method to help building
commercial multi-agent systems. FEMAS is strongly based on the concepts and
methods used to build control fuzzy inference systems, because the problem
addressed here can be seen as an automatic control problem. The likeliness are
based on the fact that agents as clients, can be seen as input variables that must be
controlled by the provider services, using business rules. Then the output control

variable is a measure of agent preference degree for some product or service
offered.
Moreover, the evolutionary aspects depicted in FEMAS come from the ALife
research field, especially from results of the Tierra project [14, 15], which to date
was the mayor effort to simulate evolutionary conditions on computer processes. It
has a very simple and powerful design of Virtual Operating System (VOS), used
to apply evolutionary pressure over the organisms, and to control computational
resource use. This VOS model is useful in B2B processes, because the customers
can be seen as organisms that can fit in some virtual business world rule by
specific business rules. The scheduler is responsible for two main tasks: to select
an organism (or agent), and call the reaper when the agent population is
threatened by lack of service quality or increasing resource consumption (server
collapse). As side effect, this kind of scheduler is more realistic, from the
marketplace point of view, and uses fewer resources that a conventional FIFO
(First In First Out), broadly used in software systems and in operating systems as
UNIX or Windows [16, 17].
FEMAS integrates fuzzy control systems and evolutionary systems, to construct a
more realistic customer/provider architectural model that can be used to create or
to enhance real-world commercial multi-agent systems. The FEMAS foundational
concepts are:

• analogy between rule driven soft agents and the representation and
management of subjective knowledge which represents linguistic
information such as expert information in fuzzy control systems, which
means agents that act as sensors providing input values,

• isomorphism between ontology and fuzzy logic linguistic variables,

• operating functionality shared by net market process and computational
evolutionary systems containers, where the rule selection by fitness is the
optimal scheduling strategy.

3.1.1. Ontologies, Fuzzy Linguistic Variables and Business Rules

Ontology is a formal explicit description of concepts in a domain of discourse [3].
Concepts, sometimes called classes, are the focus of most ontologies. Classes
describe concepts in the domain, and have slots, which describe properties of
classes. Developing an ontology includes: defining classes, defining slots,
describing allowed values for these slots, and filling in the values for slots for
instances [2, 12].
Ontologies are made to agree about the universe of discourse within specific
knowledge exchange, and to require a specific related service. KQML
(Knowledge Query and Manipulation Language), provides two keywords to allow
agents to use ontologies [12]. The keyword :ontology which is the term definition
used in the :content message parameter, and the keyword :content, which
indicates the information about which the message expresses a requirement.
Sample 1, a simple KQML conversation involving ontology can illustrate this
point.

The :content parameter, is expressed following the universe of discourse allowed
for the predefined :ontology name, in other words the :ontology parameter
implicitly defines the allowed values for :content parameter, thus KQML provides
a context free mechanism to broker in multi-agent systems, using any type of slot
in the :content parameter with a previous agreement on :ontology name meaning.
In a similar way, fuzzy control systems use linguistic variables to represent the

ontology of the problem and this ontology determines the universe of discourse
associated to the linguistic variable. The main difference between both uses of
ontology is that in fuzzy systems the ontology is implicit in the controller’s
function while in agent environments the ontology is explicit by name. The only
requirement to satisfy to apply fuzzy control techniques to multi-agent
environments is to make the ontology explicit.
Fuzzy inference systems used in automatic control are generally embedded in the
controller hardware, which receives inputs from sensors as integer or real numbers
and produces as output another number which correspond to some control action.
A pressure controller has an implicit ontology: pressure. This ontology is called
linguistic variable, and the input range of sensor is named the universe of
discourse and symbolized by the capital letter U [5, 8].
A linguistic variable has also a set of terms, which cover the entire universe of
discourse. For example, a pressure sensor which produce inputs within a range of
100 to 2300 psi (pounds per square inch), can be described as follows:

T (pressure)={ low, medium, high} ; U=[100,2300] ; input x/x ∈ U.

The terms in a fuzzy control system are used to map numeric input to a
membership degree of a concept named (ontologically) by the term. In addition,
fuzzy controllers are described by means of some linguistic control rule sets. One
of the most popular types of rules is used by FEMAS:

IF x1 is Lj and x2 is Lk and ... xp is Lq THEN control action is ui. (1)

A g e n t A A g e n t B

(eva lua te : l anguage KIF :on to logy wines
: rep ly -wi th q ry1
:content (va l (type beaujo la is) (pr ice)))

(r ep ly : l anguage KIF :on to logy wines
: in- reply- to qry1

:con ten t (f loa t 12 .99))

Sample 1 - KQML conversation including ontology.

Where i is number of control rule, N is number of rules, Lj, Lk,...,Lq are linguistic
values of the controller’s input variables x1,...,xp respectively and ui is crisp control
action for i-th rule. The result of the controller’s action is a crisp value u that is a
composition of all fuzzy rules with some compositional rule of inference and
defuzzification. Usually, max-min composition and center of gravity
defuzzification, the crisp value is obtained as follows:

(2)

Here µ denotes the membership grade of corresponding inputs of controller
(x1,...,xp) with respect to given linguistic values Lj,...,Lq and wi is the degree in
which i-th rule influences controller output. This kind of fuzzy inference system is
called Sugeno model, and is useful because it is easy and inexpensive to compute
[5]. FEMAS adopts this model to obtain a value that can be used as membership
degree to business model, expressed by business rules.
Business rule applications can be found in any business domain that enforces
dynamic and frequently changing statements of business poli cy in application
code. A Major e-commerce platform, such as ILOG, provides they software with
business rule mechanisms [19]. The rule forms are identical to control rules shown
in (1), e.g.:

IF inventory is available and client is frequent THEN serve (ASAP). (3)

So, if any business rule can be expressed as a control rule, then is possible define a
broker, which is a controller, capable to score an agent. This score value, called
schedscore is the result of defuzzyfication process shown in (2), where wr value is
obtained from the expressions like serve (ASAP) shown in (3). This expression
represents a linear function related to quality service measure or transaction
timeout restriction. Thus, schedscore can be used to reduce the average time of
transaction, or suggest some additional offer, based on the business target. Table 1
depicts the relationship between fuzzy control terminology and FEMAS
terminology, and correlates the main concepts explained in this section.

B u s i n e s s R u l e s Con t ro l Ru les

B roke rs Con t ro l l e rs

Onto logy L ingu is t i c Var iab le

F E M A S F U Z Z Y L O G I C S Y S T E M

∑

∑

=

==
N

i
i

N

i
ii

w

uw
u

1

1 ()
N

rxiL

p

i
r kminw

1
,

1

= =
=

µ

Table 1 - Relationship between FEMAS terminology and Control Fuzzy Logic
Systems terminology.

3.2. Architectural Design

FEMAS accepts KQML keyword pairs :ontology and :contents, as primary
communication with the agent. Each pair of keywords is named a characteristic of
the agent. Agent characteristics can be configured using forms or templates, it
depends on if the agent was created interactively by asking a user, or
automaticall y created by an information system. In both cases the only
prerequisite is an agreement about the ontology (by name) and the universe of
discourse, expressed as a number. FEMAS architecture is a layered architecture
consisting of a selector, a broker, and a scheduler.
The agent first communicates with the selector, which is responsible for the
agreement on business domain. After that, the agent is assigned to the broker,
which applies the corresponding business rules on agent. Finally, the result of this
process (the schedscore) is used by the scheduler to select the agent to be served
by the provider services.
FEMAS broker system architecture is depicted in Figure 1.

Selector Process

The first layer the FEMAS architecture defines only receives those agents that can
fit with the business target. This is the main function of the selector, to accept or
reject agent requests based upon agent characteristics. When an agent initiates a
communication with the selector, it looks up in the parameters database searching
for an ontology name. If the search not successful the agent is rejected, else the

:content value is examined and test for fit in the ontology universe of discourse . If
the test is successful the agent is accepted, otherwise is rejected.
The main advantage in using a parametric universe of discourse is to allow the
selector to differentiate businesses in the same marketplace, because the U of the

F E M A S
Selector

Pa rame te rs

B r o k e r

Schedu le r

Bus iness Ru les

Prov ide r Sys tem

Agen t

Figure 1 – FEMAS Layered Architecture.

same ontology can differ from one system to other. This differentiation is made
without loss of information, and without changes in agent semantics. The selector
process can be summarised as follow: if the selector can’t find the ontology name
or the value associated doesn’t fit in U, then the agent is rejected. Otherwise the
agent is accepted and assigned to a broker.

Broker Process

The broker is a controller; it is a set of business rules instantiated using an
ontology name. The broker processes all rules associated to the ontology and
respective universe of discourse and obtains a value. This value, which is the
aggregated conclusion of the rule, is associated with a service or product. Because
the rules are expressed in terms which mimic the linguistic knowledge about the
business and the aggregation process is, basicall y, a scoring process that
guarantees the agent satisfies in some degree the expectations about the target.
The result value produced by the broker is the schedscore, and can be seen as the
degree of interest from the business perspective to the target agent. There is one
broker for each product/service scheduled.

Scheduling Process

Evolutionary process are based on a fitness concept, the fitness can be defined as

“ ... an assumed property of a system that determines the probability that that
system will be selected.” [14, 18]. This probability is usually calculated using
some population statistic technique, but if this value is calculates using a fuzzy

S C H E D U L E R

A s s i g n Q u e u e

Q u e u e - 1 Q u e u e - 2 Q u e u e - n

sor t by
schedsco re

schedvalue > death valueR e a p e r
P rov ide r
Se rv i ce

schedsco re

Figure 2 – Scheduler Process.

technique such as here, the probability is replaced by a possibility which is more
precise, because it is represented by degree not relative frequency [6]. The
schedscore is an explicit value that represents a degree of fitness to the business
model. Thus, the scheduler can use this value to maintain an ordered queue by
product or service using this value as an intrinsic fitness indicator. If the resources
are low, a reaper routine can be called by the scheduler in order to free agents that
fit over a parameterised value (death value). Once the scheduler selects the agent,
it is passed to a provider service, which serves the agent. The multi queue partition
can allow intrinsic serialisation or parallelism depending on the provider
architecture. When the agent is dismissed, the scheduler removes any entry of the
agent in the queues. The scheduler process is depicted in Figure 2.
In short, the entire broker process defined by FEMAS can be summarised as
follow:

• Accept or reject the agent depending on the ontology business domain.

• All the rules associated with ontology are fired, and the schedscore is
obtained.

• The scheduler iterates, sending in each cycle, in sequential or parallel
mode, those agents that are in conditions to be served by the provider
according to best fitness to business rules.

4. Method
The method proposed here could be taken as a checklist necessary to develop and
implement a FEMAS architecture. Depending on platform and languages used to
implement the multi-agent system, other steps can be taken or some steps can be
extended, but at least the following steps must be made.

4.1. Define the Ontology

The ontologies can be defined or adopted from some standard repository. There
are some repositories with standard ontologies that can be used [4, 20]. The
ontology must be public, in order to allow agents to use it via KQML. Each term
in ontology will be a condition in business rules.

4.2. Define the Universe of Discourse

For each ontology is necessary to define the range of associated values that is the
universe of discourse; these values can be discrete or continuous. When the values
are discrete, it will be modelled as series. When the values are continuous, it will
be model as an integer or real range.

4.3. Define the Business Rules

Express the all business rules in the form:

If condition-1 [and | or condition-2 [, and | or condition-n]] then take some action

Where the conditions are logic relationships between ontology terms and take
some action is a linear function associated to service timeout, service quality
measure, product ranking or any measure useful for selecting and scheduling
clients.

4.4. Define the Products and Services

For each product or service various tasks must be done:
− Define the business rules associated, this is the broker for the product or

service. In other words, create the broker.
− Link the products or services with the software system. This can be done

creating a software relationship between a product/service and a provider
service. The scheduler that sends the agent to the provider service will use this
relationship.

− Define a scheduler queue.

4.5. Define the Membership Functions

For ontologies define the shape of the membership functions associated to each
term. Their shape depends on the significance or interpretation of the term. This
can be done keeping in mind the fuzzy inference engine will be used.

4.6. Create the Brokers

Create a controller or broker based on 4.4, keeping in mind that a broker can share
rules with other brokers, this step is closely related with the fuzzy inference engine
that will be used.

4.7. Define Operational Parameters

The scheduler and the selector need a parameter database in order to make
selections. This parameters are very important because they impact directly over
de resource use and overall performance of the system. The basic values to define
are death value and the ontology set defined in 4.2. The death value is used by the
reaper routine to force dismissal of agents that exceed this value, which not only
frees agent resources also terminates the life of the agent in some ordered and
logged way. The selector as described in 3.2 uses the ontology set.

5. Conclusions and Future Work
There are no doubts about the need of more intelligent software actors in the e-
commerce business software, but the cost and complexity of the solutions
produces a dropdown in industry. From this point of view FEMAS is a first step to
make more cost effective and reliable hybrid systems. This architecture is easy to
implement, doesn' t impose performance penalties to the server systems and can
(depending on the complexity of the rules model) provide a differentiation factor
at the same time that helps to standardise e-commerce ontology efforts. The author

is working on a second-generation FEMAS architecture that covers problems
associated with standardised FEMAS as a plug-in server, and creates a new layer
of federated brokers. The objective of this is to allow installed Web servers a
plug-in FEMAS to achieve a balanced load of resources, and to enhance the
FEMAS architecture in order to provide several abstraction levels of scheduling
capable of operating in distributed operating environments.

References

[1] Iglesias Fernandez. C. “Fundamentos de los Agentes Inteligentes.” Informe Técnico
UPM/DIT/GSI 16/97 (Spanish).

[2] Noy N. F. .and McGuinness D. L. “Ontology Development 101: A Guide to Creating
Your First Ontology.” Stanford University.

[3] Gruber T. R. ”A Translation Approach to Portable Ontologies.” Knowledge
Acquisition, 5(2):199-220, 1993.

[4] Hendler J. “Agents and the Semantic Web.” pp. 30-37 IEEE Intelli gent Systems
Journal.

[5] Mendel J. “Fuzzy Logic Systems for Engineering: A Tutorial.” pp. 345-377 Proceedings
of the IEEE, Vol. 83, No. 3.

[6] Kosko B. “Fuzziness versus Probability.” pp. 211-240 Int. J. General Syst., Vol. 17.
[7] Smith H. “The Role of Ontological Engineering in B2B Net Markets.”

URL:http://www.ontology.org/main/papers/csc-ont-eng.html.
[8] Roger Jang J. “Neuro-Fuzzy Modeling Control.” pp. 378-406 Proceedings of the IEEE,

Vol. 83, No. 3.
[9] Smith H. “Information Architecture for Net Markets ... or how to thrive and survive in

the B2B cyberspace.” First European Conference on eMarkets, May 10th-11th 2000,
Stockholm, Swedish Trade Council.

[11] Fensel D. “An Ontology-based Broker: Making Problem-Solving Method Reuse
Work.” Proceedings of the Workshop on Problem-Solving Methods for Knowledge-
based Systems at the 15th International Joint Conference on AI (IJCAI-97).

[12] Finin T. et al. “Specification of the KQML Agent-Communication Language - plus
example agent policies and architectures.” URL:
http://www.cs.umbc.edu/kqml/papers/ kqmlspec.ps.

[13] Gruber T. R. ”Toward principles for the design of ontologies used for knowledge
sharing.” International Journal of Human-Computer Studies, 43(5,6):907-928.

[14] Ray T. “Evolution complexity entropy and artificial reality.” Physica 75:239-263.
[15] Ray T. “Documentation for the Tierra Simulator.” Tierra Simulator V4.2.
[16] Tanenbaum A. Woodhull A. “Operating systems.” Prentice Hall .
[17] Tanenbaum A. “Distributed Operating systems.” Prentice Hall .
[18] Heylighen F.”Fitness.” URL: http://pespmc1.vub.ac.be/fitness.html.
[19] ILOG Rules Products. URL: http://www.ilog.com.
[20] The DARPA Agent Markup Language (DAML) Program. URL: http://www.daml.org.

