
 

 

 

 

 
Abstract 
   This paper presents an innovative approach to self-adaptation 
of the structure of a neuro-fuzzy controller in real time. Without 
any off-line pretraining, the algorithm achieves very high 
control performance through the iteration of a three-stage 
algorithm. In the first stage, coarse tuning of the neuro-fuzzy 
rules (both rule consequents and membership functions of the 
premises) is accomplished using the sign of the dependency of 
the plant output with respect to the control signal and an overall 
analysis of the main operating regions. In stage two, fine tuning 
of the rules is achieved based on the controller output error 
using a gradient-based method. Finally, the third stage is 
responsible of modifying the structure of the controller, 
proposing that input variable which should get a new 
membership function in order to improve the control policy in 
an optimum way.  

I. INTRODUCTION 
   The problem of adjusting the parameters of a control 
system based on the control performance in real time without 
any off-line pretraining is one of the most important issues in 
intelligent systems research. The main difficulty encountered 
when dealing with this topic is that the plant behavior is a 
priori unknown, i.e., neither the plant model nor its 
differential equations are available. 
   As is well known, fuzzy logic controllers have proved 
successful in a number of applications where no analytical 
model of the plant to be controlled is available [2], [3]. 
Among the different ways of implementing a fuzzy 
controller, adaptive neuro-fuzzy controllers are, at least in 
principle, able to deal with unpredictable or unmodeled 
behaviors, which made them outperform non-adaptive 
control policies when the real implementation is 
accomplished [5]. 
   Recent approaches in this field are presented in [1] and [8]. 
In the very interesting approach proposed by Andersen et al. 
[1], fine tuning of the controller rules (both consequents and 
premises) is accomplished through the controller output error. 
Since the plant output error reduction is not directly pursued, 
this method requires the existence of a previously-tuned 
controller. This problem is overcome in [6] where a SOC-
based adaptation block works concurrently with the 
controller output error method to achieve global learning of 
the controller parameters.  
   Nevertheless, none of the afore-mentioned works are 
capable of dealing with the problem of the automatic 

structure identification of the main neuro-fuzzy controller. In 
this paper, the main drawbacks of the above presented 
approaches are overcome by the use of a three-stage 
approach to automatically identify the optimum neuro-fuzzy 
controller structure and tune the main fuzzy controller 
parameters in a systematic way. The main features of the 
proposed algorithm are: 
• It needs neither a model of the plant to be controlled nor 

its differential equations. 
• Both fuzzy rules consequents and membership functions 

in the premises are fine tuned to provide a high 
performance control policy. 

• No initial guesses about the controller parameters are 
needed. The controller can run in a standalone manner 
from the start with no off-line pretraining. 

• Since this is a direct control policy, no plant model is 
created during the control process. Furthermore, no great 
amount of data needs to be collected from the plant, 
enabling the algorithm to work with high speed control 
processes. 

II. STATEMENT OF THE PROBLEM 
The main goal of this paper is to achieve real time control of 
a system which, in general, may be non-linear and whose 
exact differential equations are unknown. Furthermore, we 
assume there is no model of the plant available so there 
cannot be any off-line pre-training of the main controller 
parameters. Starting from this “void” neuro-fuzzy controller, 
we attempt to achieve the identification of the main controller 
and optimize the controller’s rules and the parameters 
defining it in order to translate the state of the plant to the 
desired value in the shortest possible time. 
   In mathematical terms, the system or plant to be controlled 
can be expressed in the form of its differential equations or, 
equivalently, by its difference equations, provided these are 
obtained from the former with the use of a short enough 
sampling period 

y(k+d) = f(y(k),...,y(k-p),u(k),...,u(k-q)) (1)
where d is the delay of the plant and f is an unknown 
continuous and derivable function. 
   The restriction usually imposed on plants is that they must 
be controllable, i.e., that there always exists a control policy 
capable of translating the output to the desired value (within 
the operation range). This means that there must not be any 
state in which the output variable does not depend on the 
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control input. Therefore, the partial derivative of the plant 
output with respect to the control signal must never be 
cancelled and as the plants are, in particular, derivable and 
continuous with respect to the control input, this derivative 
must have a constant sign, i.e., the plant must be monotonic 
with respect to the control signal. Thus, we can assume there 
exists a function F such that the control signal given by 

( )( ) ( )u k F x k=  (2)
with  

( )x k =(r(k),y(k),...,y(k-p),u(k-1),...,u(k-q)) (3)
and r(k) being the desired output at instant k, is capable of 
reaching the set point target after d instants of time, i.e., 
y(k+d) = r(k). 

III. OVERVIEW OF THE 3-STAGE ALGORITHM 
In the proposed algorithm, no information is needed about the 
equations that govern the plant, although it is necessary to 
know the monotonicity of its output with respect to the 
control signal, the delay of the plant (which can nearly 
always be taken as 1 if we use a sampling period that is not 
very small) and the inputs that can have a significant 
influence on the plant output. 
   For the main neuro-fuzzy controller, we will use a complete 
rule-based fuzzy system [4], with rules of the form: 
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where j
vX  is the j-th membership function of variable xv, N is 

the number of input variables and 
1 2 Ni i ...iR  is a scalar value. 

The fuzzy inference method, as is commonly used in all 
neuro-fuzzy systems, uses the product as T-norm and the 
centroid method with sum-product operator as the 
defuzzification strategy, i.e., the weighted average 
deffuzzification method. 
   Thus, the output of our neuro-fuzzy controller is given by: 
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where nv is the number of membership functions defined in 
variable xv. 
   In this paper, the membership functions are triangular 
functions with pair-wise overlap, i.e. each variable has a non 
zero membership value in at most two fuzzy sets. To define 
such a configuration, commonly known as a Triangular 
Partition (TP) [4], [9], [11], only the centres of the 
membership functions need to be stored, since the slopes of 
the triangles are calculated according to the centres of the 
surrounding membership functions.  
   Figure 1 shows the general flowchart of the algorithm 
proposed to accomplish the control task. Since no initial 
control parameters are available, the control process is 
carried out in three stages: 
   In the first stage [8], a coarse tuning of the neuro-fuzzy 
controller parameters is accomplished based on the plant 
output error. With a SOC-like algorithm, fuzzy rule 
consequents are adapted after taking into account the sign of 
the dependence of the plant output with respect to the control 
signal and the plant delay in a reward/penalty manner. 
Meanwhile, the error distribution throughout the operating 
regions is measured periodically in order to provide enough 
information for coarse tuning of the membership functions 
(MFs) defined in the premises of the fuzzy rules. 
   Once coarse convergency is achieved in the first stage, the 
algorithm switches to the second stage [8]. All fuzzy rule 
parameters are then fine tuned using as information source 
the controller output error via a gradient-based algorithm. 
   After convergency of the second stage, if the control policy 
is not under the pre-defined specifications, the algorithm 
switches to the stage responsible of modifying the main 
controller structure. This process is accomplished by 
examining the data taken from the plant during the previous 
steps. 

IV. PARAMETER OPTIMIZATION (STAGES I & II) 
   This section summarizes the method presented in [8] for the 
adjustment in real time of the parameters of the main neuro-
fuzzy controller for a fixed topology. As stated in that paper, 
this process comprises two main stages: the first one is 
responsible of a coarse tuning of both the rule consequents 
and rule antecedents (i.e., the membership functions). The 
second one is in charge of the fine tuning of all of them. 
These are described in the two next sub-sections.  



 

 

 

 

A. Stage I: Coarse tuning of the main controller 
parameters 

   The main problem when real time control strategies must 
be faced lies in the fact that, as the internal functioning of the 
system to be controlled is unknown, we are unaware of how 
to modify the controller’s parameters.  
 
   As stated in [12], the monotonicity of the plant provides 
valuable information on how to adapt the consequents of the 
fuzzy rules. To modify these, we need only take into account 
the rules really used to obtain u(k) as the neuro-fuzzy 
controller output. It is evident that with the kind of 
information available from the plant, only a relatively coarse 
control can be applied to the system. In this first stage of the 
algorithm, coarse adaptation of the fuzzy rule consequents is 
accomplished by evaluating the current state of the plant and 
proposing a correction of the rules responsible for the 

existence of such a state, either as a reward or as a penalty, in 
the following way (see Eq. (4)): 
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where, as in [12], this modification is proportional to the 
degree with which the rule was activated in achieving the 
control output u(k-d) now being evaluated at instant k. In the 
above expression, r(k-d) is the set point required of the plant 
output at instant k-d and y(k) is the current plant output. Note 
that it would be incorrect to use r(k), as the rules that are 
activated at instant k-d serve to achieve the desired value r(k-
d) and not r(k). C is used for normalization purposes, and its 
absolute value can be determined off-line by: |C| = ∆u/∆y, 
where ∆y is the range in which the plant output is going to 
operate and ∆u is the range of the controller’s actuator. 
Finally, the sign of C depends on the monotonicity of the 
plant, i.e., if the plant output increases (decreases) with 
increasing values of the control signal, C is positive 
(negative). 
   Using the above SOC-like algorithm, only the consequents 
of the fuzzy rules can be tuned. However, the distribution of 
the membership functions also has a strong influence on the 
performance of the control process, making it necessary to 
optimize them. When a generic controller is working in real 
time, it is very common for there to exist certain operating 
regions that are more important than others. On the other 
hand, it is not uncommon to find operating regions which the 
system never reaches. In all these cases, it is very convenient 
to re-structure the MF configuration in order to concentrate 
fuzzy rules in the most important regions and to avoid 
unnecessary effort on less important ones. The idea proposed 
in [8] to overcome this problem is based on trying to find a 
MF configuration which distributes a certain performance 
criterion homogeneously throughout the operating regions. In 
this case, the performance criterion is the integral of the 
square error (ISE). Thus, the more a certain operating region 
is activated the more frequently this region will contribute to 
the ISE. This contribution must be compensated with smaller 
plant output errors. Conversely, less activated regions can be 
allowed bigger plant output errors. 
   In order to implement this idea, we have to define a period 
of time T’ during which the ISE is computed. Thus, the 
centre of the j-th membership function of input variable v can 
be associated with a “slope” j

vp  of the form: 
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which represents the difference between the contribution of 
the preceding operating region and the succeeding one to the 
integral of the square error during the period of time T’. A 
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Figure 1: Flowchart of the proposed control algorithm 



 

 

 

 

positive value for such a slope means that the contribution to 
the left hand sector is greater than that to the right and so the 
centre must be moved to the left to counteract this effect. The 
parameter ry, (the plant output range) has been introduced as 
a normalization factor. As the order of the centres cannot be 
allowed to vary, we perform the following movement: 
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in which the temperature j
vT  of the centre j

vc , indicates how 
far the centre is moved within the limits of possible 
movement. Thus, for very high temperatures the centres will 
move large distances, while at low temperatures these 
movements will be very small. 
   Finally, the whole stage finishes when centre locations are 
modified below a certain threshold value. Since stage I is 
used only to coarse tune the controller fuzzy rules, a typical 
value of 5% of the range of every input variable is selected in 
this paper. 

B. Stage II: Fine  tuning of the main controller parameters 
   In this second stage, we use a gradient-based methodology 
in order to achieve a fine tuning of the main controller 
parameters. For this purpose, we base our approach on the 
algorithm proposed by Andersen et al. [1]: when the 
controller provides a control signal at instant k, u(k) and the 
output is evaluated d sampling periods later y(k+d), the error 
committed at the plant output is not the only information that 
may be obtained. Regardless of whether or not this was the 
intended response, we now know that, if the same transition 
from the same initial conditions but now with r(k) = y(k+d) 
is ever required again, the optimal control signal is precisely 
u(k). Therefore, at every sampling time, we do get an exact 
value of the true inverse function of the plant [10]. 
   In mathematical terms, the control signal exerted at the 
plant at instant k is given by (see Eq. (5)): 

u(k) = ( )ˆ ( ); ( )F x k kΘ   (9)
where Θ(k) represents the set of parameters that define the 
controller at instant k (rules plus membership functions) and 

( )x k  is given by Eq. (3). 
   After d iterations, we obtain at the plant output the value 
y(k+d). If we now replace the input vector ( )x k by: 

( )x k ≡ (y(k+d),y(k),...,y(k-p),u(k-1),...,u(k-q)) (10) 
an expression that only differs from ( )x k  in the first element, 
where y(k+d) replaces r(k), we obtain the following datum 
belonging to the actual inverse plant function: 

u(k) =  ( )ˆ( )F x k  (11)
   The neuro-fuzzy controller is now tested d iterations 
afterwards to see if it does indeed output a signal equal to 
u(k) when required to drive the plant through this same 
transition. Instead of producing a control signal u(k), 
however, the controller outputs the signal: 

û(k) =  ( )ˆ ˆ( ); ( )F x k k dΘ +  (12)
   Thus, the controller output is in error by 

eu(k) = u(k) - û(k) (13)
   It is important to note that, although û(k) is produced by the 
controller, it is not applied to the plant. Its only purpose is to 
calculate eu(k). Another important remark is that, since this 
datum belongs to the current state of the plant, it is expected, 
by continuity, that reducing the control output error implies a 
reduction in plant output error.  
   Thus, in each iteration k the error in the output of the 
controller is computed, where the magnitude to be minimized 
is given by: 

( ) 221 1 ˆ ˆ( ) ( ) ( ) ( ); ( )
2 2uJ k e k d u k d F x k d k≡ − = − − − Θ    (14)

   Therefore, the parameters of the main neuro-fuzzy 
controller are optimized in each iteration in the following 
way: 

( ) ( ) ( )k k J kη Θ∆Θ = − ⋅∇  (15)

V. IDENTIFICATION OF THE MAIN CONTROLLER TOPOLOGY 
(STAGE III) 

   The modification of the main neuro-fuzzy controller in real 
time is a key topic that has never been tackled in depth in the 
literature. Thus far, the majority of the adaptive neuro-fuzzy 
systems proposed in the bibliography are based on neuro-
fuzzy controllers with a fixed number of membership 
functions. The reason for this is straightforward since this is a 
very complex task. 
   In order to accomplish this issue, it is necessary to get as 
much information as possible from all the operating regions 
through which the plant has proceeded. For that reason, due 
to the fact that all operations must be made in real time from 
no initial information, this must be compiled during the very 
control process. 
   In this section, we take advantage of the real data belonging 
to the actual inverse function of the plant that we have used 
in the previous stage. For this purpose, we define a grid in the 
input space and store the most recent datum belonging to 
each of the hypercubes defined by that grid, substituting a 
pre-existing datum in this hypercube. By these means, real 
data from the plant are stored in a memory M which contains 
a uniform representation of the inverse function of the plant.  
 
   Once this task is accomplished, we can use the 
methodology proposed in [7] in order to obtain the 



 

 

 

 

information about which input variable should increase the 
number of its membership functions. In mathematical terms, 
this procedure decomposes the domain of the input variables 
(except that of the variable we are analyzing, in this case xv) 
into infinitesimal intervals of the form: 
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where vD− , vD+  are the lower and upper limits of the domain 
of variable v, and we consider each one of them individually 
as one-dimensional subfunctions of variable xv using the MFs 
already defined in that variable. As this is a fixed 
configuration, and the problem is linear, the approximation 
process can be done in a straightforward manner, and a one-
dimensional function is obtained: 

( )1 1 1,..., , ..., Nv v
v
x x x x vF x

− +
 (17) 

which approximates the error surface in the region considered 
using the MFs of variable xv and without the influence of the 
ones defined in the other variables. If function (17) is capable 
of accurately approximating the error surface in its definition 
domain, we conclude that, as far as this region is concerned, 
there is no need to insert a new membership function into 
variable xv. Conversely, if this approximation is poor then 
there is a high degree of responsibility of variable xv in the 
error existing in that region. 
   By adding all the approximation errors with respect to the 
error surface for each infinitesimal region, we can compute 
an index reflecting the degree of responsibility of variable xv 
in the existing global error: 
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where ( )xe  is the error surface, i.e., the error between the 
original function and the one approximated by the current 
neuro-fuzzy system. Finally, we compute these 
approximation indexes for each input variable and compare; 
the input variable with highest Jv is the one selected to 
increment the number of membership functions. 

VI. SIMULATIONS 
   This section presents a simple example showing the 
functioning of the above-described algorithm. Consider the 
system described by the following difference equation: 

( )

5 2 2

1.5 ( 1) ( )( 1)
1 ( 1) ( )

        0.35 sin ( 1) ( ) 1.2 ( )

y k y ky k
y k y k

y k y k u k

−Π ≡ + = +
+ − +

− + +
 (19) 

and assume its output must follow random set-points in the 
range [-4,4]. For this input range, this plant happens to be 
very difficult to control in a optimum way as is apparent from 

figure 2 where the plant behaviour has been projected for the 
particular case of u(k)=0. 

 
Figure 2. Plant to be controlled. Projection over u(k) = 0. 

 
   As input variables, the desired plant output r(k), the actual 
plant output y(k) and the two previous outputs y(k-1) and 
y(k-2) are used. The period T’ for this case has been selected 
as 500 epochs, which is estimated to be sufficient to compute 
the ISE values.  
   In Table 1, the evolution of the control process is presented 
for the whole algorithm proposed, starting from a “void” 
neuro-fuzzy system, i.e., only one membership function 
defined for each input variable and thus, only one constant 
output which is initially set to zero. 
 

 r(k) y(k) y(k-1) y(k-2)  

Config. J1 J2 J3 J4 
MSE*1000 
after stage II 

1x1x1x1 0.485 0.144 0.126 0.0154 6493 
2x1x1x1 0.0320 0.201 0.194 0.0324 307.4 
2x2x2x1 0.0233 0.105 0.105 0.0216 108.8 

2x3x3x1 0.0148 0.0681 0.0687 0.0140 88.11 
2x4x4x1 0.00975 0.0228 0.0235 0.00968 12.3 

2x5x5x1 0.00816 0.137 0.0138 0.00862 5.17 
2x6x6x1 0.00754 0.0956 0.0964 0.00787 1.74 

Table 1. Evolution of the proposed algorithm. 

   As can be seen from the table, the first decision that the 
third stage of the algorithm makes is to use the set point r(k) 
as input variable. It must be taken into account that, although 
the main controller is not using initially r(k), the auxiliary 
systems do use it and that is the reason why the control 
process can be accomplished even with only one rule (the 
system will behave as a pure adaptative controller, with no 
learning). 



 

 

 

 

   Nevertheless, once two MFs are defined for the first 
variable, the algorithm starts adding new MFs in y(k) and 
y(k-1) and never in y(k-2). This is the optimum evolution 
since if we take a look at equation (19), we can check that the 
control output u(k) varies linearly with r(k), that it does not 
depend on y(k-2) and that its dependency with respect to y(k) 
and y(k-1) is exactly the same. 
   Finally, the evolution of the control process at 
configuration 2x5x5x1 is depicted in figure 3. As can be 
readily seen, both the contribution of the first two stages and 
the decisions made by stage III, do cooperate towards a really 
optimum control policy. 

VII. CONCLUSIONS 
   In this paper, a new algorithm to automatically identify the 
structure of a neuro-fuzzy controller and self-tune all its 
parameters without any off-line pretraining has been 
proposed. Using a three-stage approach, the methodology is 
capable of obtaining optimum configurations and optimum 
parameter values for the fuzzy rules (both rule consequents 
and membership functions defined in the premises) both in 
real time. Starting from a “void” main neuro-fuzzy controller, 
coarse tuning is achieved based on the plant output error. 
When the algorithm switches to the second stage, fine tuning 
of the fuzzy rules is accomplished by using controller output 
error as the information source. Finally, the third stage is 
responsible of finding a more suitable main controller 
topology.  
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Figure 3: Control evolution after convergency using the 2x5x5x1 configuration 



 

 

 

 

 
Abstract 
 

      This paper presents an innovative approach to self-adaptation of the structure of a neuro-fuzzy 
controller in real time. Without any off-line pretraining, the algorithm achieves very high control 
performance through the iteration of a three-stage algorithm. In the first stage, coarse tuning of the 
neuro-fuzzy rules (both rule consequents and membership functions of the premises) is accomplished 
using the sign of the dependency of the plant output with respect to the control signal and an overall 
analysis of the main operating regions. In stage two, fine tuning of the rules is achieved based on the 
controller output error using a gradient-based method. Finally, the third stage is responsible of 
modifying the structure of the controller, proposing that input variable which should get a new 
membership function in order to improve the control policy in an optimum way. 
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