
 

Fuzzy Systems and Multideme Genetic Algorithm 
 

I.Rojas, H.Pomares, J.González, E.Ros, Mouncef Filali, F.Rojas 
Department of Architecture and Computer Technology. University of Granada. Spain. 

 
 

Abstract 
In this paper we propose a GA that is capable of simultaneously optimizing the 
structure of the system and tuning the parameters that define the fuzzy system. For 
this purpose, we use the concept of multiple-deme GAs, in which several populations 
with different structures (number of input variables) evolve and compete with other. 
In each of these populations, the element also has different numbers of membership 
functions in the input spaces and different numbers of rules. Instead of the normal 
coding system used to represent a fuzzy system, in which all the parameters are 
represented in vector form, we have performed coding by means of multidimensional 
matrices, in which the elements are real-valued numbers, rather than the traditional 
binary or Gray coding. 
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I. FUZZY MODELING BY GENETIC ALGORITHMS  
Two primary tasks of fuzzy system construction are structure identification and parameter 
adjustment. The former determines the number of input variables, its number of partition or 
membership functions, and the number of fuzzy rules. The latter identifies the set of 
parameters to optima approximate the set of I/O vectors a la given fuzzy structure. The 
design of a fuzzy system involves the structure of the rules of the system, and the membership 
function parameters.  

To typical examples using the technique of learning from examples ca be found by 
applying either neural networks or genetic algorithms in the design of the FP’s. The former 
approach has some drawbacks: 1) it can only use numerical data pairs; 2) it does not always 
guarantee the optimal system performance due to easy trapping to local minimum solution; 
and 3) it is not easy to interpret the created fuzzy rules due to its internal representation of 
weights. Designing the FP’s based on the GA’s has been widely attempted since it can 
provide more possibilities of finding an optimal (or near-optimal) solution due to the 
implicit parallelism of GA’s. 

GAs have the potential to be used to evolve both the fuzzy rules and the 
corresponding fuzzy set parameters [10]. Some of the work of fuzzy systems and GAs 
concentrates exclusively on tuning of membership functions [7] or on the selecting an 
optimal set of fuzzy rules [9], while others attempt to derive rules and membership 
functions together [3]. To obtain optimal rule sets and optimal sets of membership 
functions, it is preferable that both are acquired simultaneously [5]. To optimize the whole 
fuzzy system simultaneously, two structures will be used: one to encode the membership 
functions and the other for the fuzzy rules. 
A. Membership function coding 
The membership functions are encoded within an "incomplete" matrix in which each row 
represents one of the variables of the system, and where the columns encode the parameters 
of the membership functions. Because each of the input variables of the system has a 



 

 

different number of membership functions, the chromosome structure used to store the 
membership functions is not a "complete" matrix, as each of the m rows has a different 
number of columns nm. As we have selected a triangular partition (TP), the only parameter 
that needs to be stored is the centre of the triangular function [11]. A fuzzy set i

mX  is 
defined by a linguistic function in the form: 
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where i
mc  represents the centre of the i membership function of the input variable m. Thanks 

to the membership function configurations selected, it is straightforward for a human 
operator to understand the final fuzzy system obtained. Because the number of  membership 
functions is also optimized it is possible for some of the input variables to be removed, and 
these would thus have no membership function. 
B. Fuzzy rules codification 
To encode fuzzy rules, rather than a string or vector where the numerical consequents of the 
conclusions will appear, we carried out spatial encoding in the form of a n1 x...x nn matrix, 
noting that nm is the number of membership functions contained within each input variable. 
By using string linear encoding, rules that are close together within the antecedent and 
which, when fuzzy inference is performed are activated simultaneously, can be distantly 
encoded. Thus, in a planar structure, the neighborhood properties are destroyed when it is 
forced into a linear chromosome. In the behaviour of GAs, it is preferable for fuzzy rules 
that are similar in the antecedent to be encoded as neighbors. Therefore, and as is implicit 
in encoding, rules that are neighbors in the rule table create interference with each other. 
Fig.1 shows the complete fuzzy systems codification. Note that the genetic operators 
described in the following section take into account the spatial structure of the fuzzy rules. 
Finally, as learning from examples is used, the training data might not cover the whole input 
domain. This would arise from the huge quantity of data that would be needed, and also from 
the physical impossibility of obtaining such data. In this case, an incomplete rule base is 
obtained, and the non-existent rules are encoded in the consequent with a Non A Number 
(NaN) and thus are not taken into account in the fuzzy inference process. 
 



 

 

 

 

 

 

 

 

 

Fig. 1Codification of a GA population with 3 

demes 

 
Fig.2 Migration towards a fuzzy system with 
a lower dimensionality 

 
Fig.3 Increasing the number of membership 
functions and rules 

 
Fig. 4 Migration towards a fuzzy system 
with a higher dimensionality 

C. Fitness function 
To evaluate the fuzzy system obtained, we have used the error approximation criterion, but to 
take into account the parsimony principle, that is, the number of parameters to be optimized in 
the system, we add a new term to describe the complexity of the derived fuzzy system.  In the 
approach presented, GAs are used to search for an optimized subset of rules (both number 
of rules and the rule values) from a given knowledge base to achieve the goal of 
minimizing the number of rules used while maintaining the system performance.  If we 
have various models based on the same set of  examples, the most appropriate one is 
determined as that with the lowest description length. Another more flexible alternative is 
to define the fitness function as a linear combination of the error committed by the system 
and the number of parameters defining [4]: 

ComplexityWErrorWfitness CE ⋅+⋅=  (2)



 

 

II. MULTIPLE-POPULATION OR MULTIPLE-DEME GA 
The theme of this article is that different structures of fuzzy systems may evolve and 
compete with each other, in such a way that even information obtained by fuzzy systems 
with different numbers of input variables may be shared. In general, for identification 
purposes, no a priori information  about the structure of the fuzzy system is always 
obtained. Even the number of inputs (for example, in time-series prediction problems) is 
not always known. For this purpose, a multiple-population (or multiple-deme) GA 
configuration is used [1], in which each deme has a different number of input variables; 
within each deme there are fuzzy systems with different numbers of membership functions 
and rules. Basically, the configuration consists of the existence of several sub-populations 
which occasionally exchange individuals. Therefore it is necessary for there to exist 
intercommunication between the various demes that comprise the total genetic population. 
This exchange of individuals is called migration and is controlled by several parameters.  
A. Migration between neighbour demes 
In this paper, two different situations of migration between demes are considered: the 
migration towards demes with a lower dimensionality and that towards those with a higher 
dimensionality. Fig.1 illustrates the case in which the exchange of individuals between 
demes only occurs between near neighbours, which is equivalent to say that the exchange 
occurs between fuzzy systems that differ by one in their input space dimensionality. The 
migration of a fuzzy system with a particular number of input variables towards a system 
with a lower dimensionality requires the previous, and random, selection of the variable to 
be suppressed (we term this variable m). The second step is then to determine, again in 
random fashion, one of the membership functions of this variable (termed j) and to 
construct the new, lower dimensionality, fuzzy system that only has the rules corresponding 
to the membership function j that has been selected (Fig.3). Thus the set of membership 
functions of the new fuzzy system is identical to that of the donor system, except that the 
variable m has been removed. The rules are determined by the following expression: 
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In the second case, the new fuzzy system (the new offspring) proceeds from a donor fuzzy 
system with a lower number of input variables (Fig.4). Here, it is not necessary to 
determine any donor system input variable, as in the migration described above, because 
the new offspring is created on the basis of the information obtained from the donor system, 
with the increase of a new variable; which is randomly selected from the set of variables in 
the higher dimensionality deme that are different to the deme with lower dimensionality. 
This new variable initially has a random number of homogeneously distributed membership 
functions, and its rules are an extension of the donor fuzzy system, taking the form: 
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III.  GENETIC OPERATORS. 
To perform the crossover of the individuals within the same subsystem, we distinguish 
between the crossover of the membership functions and that of the rules. 



 

 

A. Crossover of the membership functions. 
When two individuals have been selected (which could be termed, i and i') within the same 
subsystem in order to perform the crossover of the membership functions, the following 
steps are taken: 
1.-One of the input variables of the system (for example, m) is randomly selected. 
2.-Let i

mn and 'i
mn  be the number of membership functions of system i and i' for the 

randomly selected variable m. Assume that i
mn # 'i

mn . Then from system i we randomly 

select two crossover points, p1 and p2, such that: 1#p1#p2# i
mn . The membership 

functions that belong to the interval [p1,p2] of individual i are exchanged for the 
membership functions of individual i' that occupy the same position.  
B. Crossover of the rules. 
To achieve the crossover of the consequents of the membership functions, we substitute N-
dimensional sub matrices within the two individuals selected to carry out the operation. 
One of the individuals is termed the receptor, R, whose matrix is to be modified, and the 
other is the donor, D, which will provide a randomly selected sub matrix of itself. The 
crossover operation consists of selecting a sub matrix S from the rule matrix of the donor 
individual such that a matrix S* of equal dimensions and located at the same place within 
the receptor individual is replaced by the new rules specified by matrix S. In other words, 
the new offspring O is equal to R except in the sub matrix of the rules given by matrix S, 
located at the point vector (A1, A'1, A2,...,AN). Therefore, the following steps are taken: 
1.- Select two individuals R and D 
2.- In order to perform the (N+1) points crossover operator, select a vector (A1,A'1, 

A2,...,AN), such as the sub matrices S and S* fulfill S⊂R and S*⊂D. 
3.-  Create an offspring  interchanging the sub matrices S and S* in R. 
C. Mutation  
In mutation, the parameters of the fuzzy system are altered in a different way from what 
occurs within a binary-coded system. As the individual is not represented by binary 
numbers, the random alteration of some of the system’s bits does not occur. Instead of this, 
there are perturbations of the parameters that define the fuzzy system. Firstly, when the 
fuzzy system that will be mutated has been selected, a parameter defining the fuzzy system 
(membership functions or rules) is randomly selected with a probability of Pm. Secondly, 
the parameter is modified according to the following expression: 
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where the values that perturb the membership functions are given by 
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guarantee that the order of the membership function locations remains unchanged (a typical 
value is b=2, meaning that, at most, a centre can be moved as far as the midpoint between it 
and its neighbour). The parameter R∆ is the maximum variation of the conclusion of the 
rules.  



 

 

D. Increasing the number of membership functions 
This makes it possible for all of the information contained in the chromosomes of a fuzzy 
system to be transferred to another system with greater structural complexity, as the number 
of membership functions of a particular, randomly-selected, variable increases. 
To achieve this, the first step is to select an input variable at random (for example, m) and 
within this variable to select a position of the membership functions, j, where j0[1,nm]. At 
this position j, a new membership function will be introduced, such that the order of the 
previously-defined functions remains unaltered. Thus, the new centre of this function is 
randomly selected but with the restriction: 1* +<< j

m
j

mm
ccc . Thus the new distribution of 

membership functions for the variable m is now: { 1
mX , 2

mX ,..., j
mX , *

mX , 1j
mX + …, mn

mX }. 
With respect to the new rules that have been added, we perform a linear interpolation of the 
new rules with their immediate neighbours, adding a perturbation. Fig.4  represents the 
effects of this operator on a fuzzy system.. This is expressed in mathematical terms as: 
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E. Decreasing the number of membership functions 
A reduction in the number of membership functions within a fuzzy system simply removes, 
at random, one of the membership functions from a variable that is also randomly selected. 
As well as the membership function, the rules associated with it are also removed 
IV. SIMULATION RESULTS 
We will use time series generated from a differential of difference equation governed by 
determinism (in which, once the initial value is given, the subsequent states are all 
determined) . This is the deterministic chaos of a dynamic system. The Mackey-Glass 
chaotic time series is generated from the following delay differential equation:  
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Prediction of this time series is recognized as a benchmark for testing various neural-
network architectures [8]. When J>17, the equation shows chaotic behaviour. Higher 
values of J yield higher dimensional chaos. For the sake of comparison with earlier work, 
we have selected the parameter ∆=j=6 and J=17. 

We have considered five input candidates: x[t-24], x[t-18], x[t-12], x[t-6], x[t], to 
the system and the GAs have to find among them the more important inputs affecting the 
output x[t+6], taking into account the complexity of the final rule. Therefore, in this 
example Nmax is equal to five. We used 4 demes, with 2, 3, 4 and 5 input variables. As a 
result of predicting 6 steps ahead of the Mackey-Glass time series, the root mean square  
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Fig.5 a) Result of the original and predicted Mackey-Glass time series (which are 

indistinguishable). b) Prediction error 

Method Prediction Error 

(RMSE) 

Auto Regressive Model 0.19 

Cascade Correlation NN 0.06 

Back-Prop. NN 0.02 

Classical RBF (with 23 neurons) [2] 0.0114 

6th-order Polynomial 0.04 

Linear Predictive Method 0.55 

5 MFs 0.049 

7 MFs 0.042 

Kim and Kim (Genetic Algorithm 

& Fuzzy System) [8] 

9 MFs 0.038 

ANFIS  & Fuzzy System [6] 0.007 

Product T-norm 0.0907 Wang et al. [12] 

Min T-norm 0.0904 

Our approach, using only 3 input variables with 5, 6 and 

8 membership functions  

0.032  

Table  1: Comparison results of the prediction error of different methods for 



 

 

 
error and the correlation coefficient are 0.032 and 0.98. Fig.5.a shows the predicted and 
desired values (dashed and continuous lines respectively) for both training and checking 
data (which is indistinguishable from the time series here). As they are practically identical, 
the difference can only be seen on a finer scale (Fig.5.b). Table 1 compares the prediction 
accuracy of different computational paradigms presented in the bibliography for this 
benchmark problem (including our proposal), for various fuzzy system structures, neural 
systems and genetic algorithms. 
V. CONCLUSIONS 
While the bibliography describes many methods that have been developed for the 
adjustment or fine-tuning of the parameters of a fuzzy system with partially or totally 
known structures, few have been dedicated to achieving both simultaneous and joint 
structure and parameter adjustment.  The goal of this research is to design an optimal fuzzy 
system than can extract fuzzy rules and specify membership functions automatically by 
learning from examples. This method has the merits that it does not require both the precise 
mathematical modeling of fuzzy system and the human expert’s help since the input-output 
characteristics of fuzzy system are approximated by learning the training examples. In this 
article, a real-coded genetic algorithm (GA) is proposed capable of simultaneously 
optimizing the structure of a system (number of inputs, membership functions and rules) 
and tuning the parameters that define the fuzzy system. A multideme GA system is used in 
which various fuzzy systems with different numbers of input variables and with different 
structures are jointly optimized. Communication between the different demes is established 
by the migration of individuals presenting a difference in the dimensionality of the input 
space of a particular variable. We also propose coding by means of multidimensional 
matrices of the fuzzy rules such that the neighborhood properties are not destroyed by 
forcing it into a linear chromosome.  
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