
Modified Self-Organizing Maps for Line Extraction
in Digitized Text Documents

J.M. Alonso-Weber, I.M. Galván and A. Sanchis

Departamento de Informática, Universidad Carlos III de Madrid,
Avenida de la Universidad 30, 28911, Leganés, Madrid.

jmaw@ia.uc3m.es, {igalvan, masm}@inf.uc3m.es

Abstract.. Different authors have developed modifications of the Kohonen
Self-Organizing Maps to solve known combinatorial optimization problems. In
this paper a modification of the Kohonen Map is proposed to solve the
detection of white inter-text spaces in a digitized plain text documents. The idea
relies on the fact that line extraction problem has several features which match
easily with Kohonen networks, although an adaptation to the problem of the
original learning rule has to be made at first. A test with different digitized text
images is performed showing the abil ity to segment lines.

1 Introduction

The Self-Organizing Map (SOM) of Kohonen [1][2] consists of a group of nodes
(neurons) placed in some type of topology, such as a lineal ribbon or a two- or
multidimensional matrix. In this topology the concept of vicinity is defined in such a
way that two contiguous nodes are considered as immediate neighbours, while those
nodes which are not contiguous present a smaller degree of neighbourhood. This
relationship is measured with some metric, usually the Euclidean distance. This
deliberately chosen structure can be considered as a discreet and finite space in which
each one of the nodes represents one of the possible space values.

Each one of the nodes receives a series of stimuli , simultaneous in time, that come
from a finite group of neurons (called input neurons). The stimuli that transfer the
input neurons to each of the output neurons are always numeric and grouped in a set
(input pattern). Therefore, we will also have an input space with so many dimensions
like input neurons, in which the patterns will be distributed in an arbitrary way.

For each of these patterns the SOM will activate the most “similar” neuron in the
input space. The measure of similarity is carried out with a function of distance
(Euclidean or any other metric distance). Afterwards, the active (or winning) neuron
(i.e. the nearest one to the pattern) will modify its parameters (co-ordinates) moving
towards the input pattern. Additionally, all the nodes are moved towards the input
pattern in some amount that diminishes with a decreasing neibourhood relation to the
winning node, and with an increasing simulation time. This variable dragging
dynamics allows the SOM to spread inside the input space adapting to the forms of
the distribution of patterns: at first (when the dragging is bigger) adopting a vague and

global approach, and later on, tuning to the contours of the distribution of patterns in
the input space.

Some properties present in these SOMs are:

1. Locations in the input space with higher pattern densities are assigned a higher
number of map nodes, while locations with few or no patterns at all do not
allocate any nodes.

2. The projection performed from the input into the output space preserves the
neibourhood properties of the distribution in the input space. This means that
patterns which are close to each other in the input space, compete for the same
node or for nodes which are neighbours in the map topology.

Many applications have been studied for very different types of problems. Most of
them are related with the topics of classification, vector quantification, dimensionality
reduction, or even information retrieval.

A particular modification of these SOMs was carried out to approach the well -known
Travelli ng Salesman Problem [3]. It relied on the idea of simulating the behaviour of
an elastic net (previously described in [4]) which is shaped into a minimal distance
route by the attraction of the individual cities distributed in a space plane. The
resulting application is simple, elegant and with interesting results, but also presents
restrictions that limit its use exclusively to the Euclidean and symmetrical variant of
the TSP.

The purpose of this work is to modify some parameters and the dynamic behaviour of
the traditional SOM in order to achieve a more general framework for solving some
Combinatorial Optimization Problems. A first small application of this modified SOM
is tested on a line extraction problem in digitized plain text documents.

Interesting types of problems are found in the context of digital image matching.
Inside this problem, the 2D shape matching can be approached following the
Kohonen SOMs philosophy. In the literature there are many different shape
description methods [5, 6, 7], none of the methods were found to work well on
different kind of shapes, and sometimes the methods are very domain specific, hardly
to extend to other shapes. Another interesting problem is the localization of characters
in a document image. That implies several operations such as determining the skew
[8], separating picture from the text [9] and portioning the text into columns, lines and
words, which is accomplished through a segmentation process [10].

The interest of this paper is to approach the line detection problem in a document
image, this is to identify not-printed zones in the image. The problem is solved using
the Kohonen network, but an adaptation of the original learning rule to the problem is
needed.

In section 2, the adaptation of the model’s general dynamics is described. Section 3 is
deals with the experiments done to validate the proposal and section 4 contains some
conclusions and future work.

2 Self-Organizing Maps for Solving Line Extraction Problems in
Digitized Texts.

The idea of applying the SOMs on the Line Extraction Problem relies on the fact that
this problem has several features which match easily with the SOFM. Plain text
consists of a number of text lines which are interspersed with white space lines.
Usually, this white space lines will be rather straight, and the separation between text
lines will be rather periodic in size. Furthermore, text lines will be parallel and
grouped in a more or less rectangular appearance. Although this seems to be a fairly
structured problem, in practice it might be diff icult to determine how the single text
lines are arranged. Several problems and types of distortion can appear when scanning
a document: a skew, mechanical distortions which convert square texts arrangements
into trapezoidal ones, curved lines and uneven contrast, brightness or colour casts can
confuse text from white discrimination.

A slight skew (of even 1º) in the scanned document might force to use Hough
Transforms or other time-consuming techniques to recognize the correct white inter-
text separation spaces.

Algorithm description

The underlying idea for using the SOM for this problem is the idea that white inter-
text spaces consist of several white regions which traverse the document in a
continuous, straight and parallel way. As noted before, Kohonen Maps tend to
dedicate more nodes to regions in input space with a higher pattern density.
Moreover, neighbouring patterns in input space tend to compete for neighbouring
nodes in the SOM. The idea is to try to project the white inter-text lines onto node
lines defined on a two-dimensional SOM. There is a need to modify the SOM
dynamics, as we also intend to detect the straight and parallel arrangement of text
lines. The main basic ideas of this modifications are:

1. “Horizontal” node lines of the SOM should evolve into rigid lines through
time. (Horizontal is deliberately quoted because it refers to the node lines that
match horizontal white inter-text lines, which in a skewed digitized document
could be a relative concept).

2. Starting from a low quantity of node lines, new lines should be inserted where
needed, i.e. when the map detects unmatched white inter-text spaces, or when
a node line is placed crossing a printed text line.

As it seems, horizontal node lines have an important purpose. Vertical node lines
might not be expected to have such a relevance, but also have an influence in the
segmentation quality, as it will be shown in the experimental section.

Also expected is the abilit y to detect skew in the scanned text image. Uneven contrast,
brightness and colour cast problems will be partially eliminated with a special pattern
generation procedure. This procedure will be described at first. Afterwards, the
learning algorithm of the SOM is explained, concluding with the changes induced in
the dynamics.

Pattern generation

The task of this procedure is to convert the white inter-text pixels into patterns that
will be used for the SOM learning procedure. Being the scanned text image a
digitized image composed by NxM pixels, we will consider dij (0 ≤ i < N, 0 ≤ j < M)
as the value for each pixel located at line i and column j. As usual, those pixel values
range from 0 to 255, where 0 represents a white dot and 255 the black one. Since the
segmentation process has to make out white zones from the printed ones in the image,
an appropriate selection of pixels dij must be carried out. The final data should be pairs
Pij = (i, j) which correspond to pixels with no ink. The procedure to select the most
relevant pixels is defined as follows:

A threshold S (with 0 < S < 255) is defined (usually about 128). Each pixel value dij is
taken as a real white dot when

dij ≤ S (1)

Applying this only criterion generates a huge amount of patterns. Useless information
might be also included because pixels inside the hole part of letters could be selected.
Additionally, in some written documents, such as photocopies or newspapers, there
will be a lot of noisy data due to intermediate gray tones which can not easily
identified as originally being white or ink dots.

In order to avoid the previously described situations, additional criterions are used to
select pixels. Only those pixels whose value are a local minimum inside a square
around them, are considered. The size of the square neighbourhood is given by nxn.
The pixel at (i, j) should meet:

dij < dkl , n > 0, ∀ k, j with |i –k| ≤ n, k ≠ i, | j – l| ≤ n, l ≠ j (2)

The maximum order of the minimum is defined as n(dij) , the maximal value of n at
which the pixel is still an absolute minimum inside the neighbourhood.

In order to avoid local minima due to scanner sampling errors that belong to big white
surfaces, another restriction is added. For each local minimum dij

∃ dkl dkl > S, with |i –k| = n, | j – l| = n (3)

This limits the pattern selection to white pixels located close to written text. Two
limits, Oinf and Osup are used to reduce the amount of the pixels.

Oinf < n(dij) < Osup (4)

For those pixels that meet (1), (2), (3) and (4) a pattern set Pij = (i, j) is generated for
training the SOM.

Learning algorithm

As stated, a two-dimensional Kohonen map will be used, in which the output nodes,
denoted as Cpq, are distributed onto a grid of dimension v x h. The index p (0 ≤ p < v)
and q (0 ≤ q < h) determine the position of nodes in the grid (row p, column q). There
is a metric dt() defined on the grid that measures the neighbourhood relation between
output nodes. As usual, this metric will use the Euclidean distance. If Cpq and Crs are
output nodes, the distance over the map between the nodes is given by eq. (5):

dt(Cpq , Crs) = ((p - r)2 + (q - s)2)1/2 (5)

Each node Cpq in the map has associated a real weight vector, whose dimension is
given by the pattern dimension. In our case, two weights or parameters are used,
denoted as XCpq and YCpq,, that represent the position of the nodes over the image (input
or pattern space). Since the image has NxM pixels, the weights must verify:

0 ≤ YCpq < N, 0 ≤ XCpq < M, 0 ≤ p < v, 0 ≤ q < h (6)

1. The weights XCpq, YCpq are randomly generated at the first time. When patterns Pij

are presented to the network, the weights of the output nodes are iteratively
updated using the following learning procedure:

2. For each pattern Pij=(i,j) the winning unit, called C* pq, in the map is calculated.
The winning unit will be the output node with the weight vector closest to the
current pattern Pij:

Dist(C*

pq, Pij) < Dist(Crs, Pij), ∀ r ≠ p, s ≠ q (7)

where Dist() is the Euclidean distance (in the input space). Taking into account that
Pij=(i,j), the distance is given by eq. (8):

Dist(Crs, Pij) = ((YCrs – i)2 + (XCrs – j)2) ½ (8)

3. Once the winning node is identified, all weights in the network are adapted using
eq. (9) and (10):

Y’

Crs = YCrs + fgn (g, C*

pq , Crs) * (i - YCrs) (9)
X’

Crs = XCrs + fgn (g, C*

pq , Crs) * (j - XCrs) (10)

The learning rule moves all nodes in the map into the direction of the pattern Pij=(i,j)
and the amount of this movement is given by the neighbourhood function fgn () :

fgn (g, C*

pq , Crs) = g * e –k (11)

k = dt(C*

pq , Crs)
2 / g2 (12)

where dt() is the distance over the map defined in eq. (5); and g is the gain parameter
which decreases between two complete iterations. Several iterations are needed to go

from a high gain value to the low one. The time dependence of the gain parameter is
described in eq. (13):

g= g(t) = g0* (1 - α)t (13)

where t , the time variable, is increased by one unit once a complete iteration is
performed; g0 and α are the only fixed parameters. g0 gives the starting dragging force
of the nodes, and α determines the number of iterations used to complete the
development of the SOM.

The neighbourhood function defined in eq. (11) is used to move the weights in such a
way that units close to the winner, as well as the winner unit, have their weights
changed appreciably. The winner unit will undergo the maximum movement, while
the rest of the nodes in the map are modified depending of the their closeness to the
winner unit. The value of neighbourhood function for the winner C* pq node is g, from
eq. (11):

fgn (g, C*

pq , C
*

rs) = = g * e –0 = g (14)

because k = dt(C*

pq , C
*

rs)
2 / g2 = 0

For any other node in the map, k > 0. Hence the value follows:

fgn (g, C*

pq , Crs) < fgn (g, C*

pq , C
*

pq) (15)

4. Once the steps 2 and 3 are repeated for all patterns an iteration concludes. The t
parameter is incremented and the new gain parameter is computed. So far the
usual learning procedure for SOMs.

5. At this point some additions are introduced to modify the SOM’s behaviour and
to apdapt it to the line extraction problem (described in the next section).

6. The procedure is stopped when a lower bound value of the gain parameter is
reached. At very low gain rates, no visible modifications are performed in the
SOM, which means that further iterations are of no use.

Modified Dynamics

As stated, after each iteration some new calculations are performed.
For each node, a new position in the input space is computed. At first:

Cpq = (C(v-1)q - C1q)*p + C1q (16)

and afterwards:

Cpq = (Cp(h-1) – Cp1)*q + Cp1 (17)

The effect of eq. (15) is that the horizontal node lines evolve into straight lines during
the SOM expansion. Eq. (16) is needed to equili brate the vertical movements induced
by eq. (15). In addition, it allows the SOM to acquire an approximate square
appearance which is desirable as we expect text blocks to have a rectangular layout.

The insertion of new line nodes takes place in case following the next considerations.
For each Cpq we will have a set of patterns WCpq= {Pkl} for which Cpq is the winning
node and that contains SCpq =|{{Pkl}| patterns.

DCpq= (ΣPkl dist (Cpq , Pkl)) / SCpq (18)

Lp = Σq DCpq (19)

Eq. (18) is useful for identifying those nodes that cover big extensions of patterns.
After each iteration, node lines with the maximal value for eq. (19) are duplicated, i.e.
a new line node is inserted in the map, straight before or after. This allows the map to
allocate new node lines where more than one inter-text lines are covered with a single
node-line.

3 Experimental Results

The proposed approach is tested with the problem of segmentation in digitized text
images (as books or newspapers pages), finding their lines, and after separating each
one of the characters. This problem is the previous step in the character recognition in
written texts and allows showing the main characteristics of the SOMs, as the
invariant with rotations in the text, the usefulness of transforming flexibilit y into
rigidity and the dynamic generation of nodes and sub-structures in the map.

Experimental framework

The images used for the following experiments were scanned using a flatbed scanner
at 1200dpi as colour documents. No contrast, brightness nor any other enhancement
was performed. From the obtained images some interesting portions were selected,
cut out and resized (about a 60%) to 320x240 pixels. Then colour information was
converted into a grey-scale using the average between Red, Green and Blue
intensities.

Two different cases were selected (see Figure 1). From one photocopied article (10
years old, with an intense yellow cast and a skew of about 0.75º) two different
portions were selected. The same procedure was repeated on a photocopy of the same
article (which eliminated the skew, the yellow cast, increased contrast, and a loss of
some details). This second photocopy was also scanned with a skew of about 7º.
Additionally, one hand-written text was scanned.

Figure 1: Two different scanned images

Original photocopied article. Portion 1. 0.75º skew Secondary photocopy. Portion 2. 7º Skew.

Experiment Evaluation

The previously mentioned digitized text portions were presented to the modified SOM
simulator. For each text, different simulations were performed starting with different
initial sized maps.

Figure 2: A simulation sample

Initial stage of the SOM placement
No lines are generated.

Intermediate stage of the SOM placement
First lines growing

Final stage of the SOM.
No more node lines are generated.

Final placement of the SOM.

The resultant segmentation was then evaluated. Several situations and error types
were taken into account:

A. More than one node line allocated for one single white inter-text line.
B. A node line crosses a white inter-text line diagonally.
C. A node line crosses a text line.
D. A missing node line in a white inter-text line.
E. Excessive or insuff icient map skew to match the documents skew.

Experimental Results

For each simulation carried out the type and rate of failed matches is indicated.

The simulation parameters were g0 = 10.0, α = 0.1 and gstop = 0.01

Number of initial nodes (n) 5 6 8 10
Processed Images Error types and (quantities)
Original photocopy. Portion 1 C(1) C(1) C(1) none
Original photocopy. Portion 2 C(3) E C(4) E C(2) E C(1) E
Secondary photocopy. Portion 1 C(1) B(1) C(2) B(1) C(1) none
Secondary photocopy. Portion 2 C(1) E none none none
Skewed photocopy (7º skew). Portion 1 C(many) E C (many) C(many) E C(many) E
Original photocopy (7º skew). Portion 2 none none none C(3) E
Hand-written text 1. none none none *

* The hand-written text has only 8 text lines.

The first conclusion when studying the results is that the error rate is lower when
using a higher number of nodes per line in the SOM. The only cases that doesn’ t
follow this statement are the skewed text portions. A first inspection of this case
determines that the number of generated patterns are in both cases lower than 1300.
For a final SOM of 14x10 nodes, this means that the average pattern number per node
is about 10, which might be somewhat low to allow correct development of the map.
In the case of the original photocopy, the low contrast of the image seems to give a
lower number of patterns.

Nevertheless it seems reasonable to state that a higher number of vertical rows leads
to a better segmentation. The drawback of this is the need for a higher computation
time.

Some fine-tuning of the pattern generation process (as might be deduced from the
final placement in Figure 2) and of the SOM dynamics should be arise into a more
robust segmentation .

4. Conclusions and future works

Conclusions from this work about the SOMs abilit y to segment lines in digitized texts
are that it is a feasible approach in plain text documents and an interesting alternative

to other sophisticated techniques used in signal processing. It relies on known features
of text documents which are easily detected with the modified SOM model.

As a guide for future work, there are several different paths:
1. Modifying the pattern selection procedure, for a more robust pattern selection.
2. Trying to use more complex and inhomogeneous SOMs in order to segment more

complex documents (multicolumn, with images and textures).
3. Speeding up the SOM´s learning algorithm.
4. Including the abilit y to segment individual letters and characters, once each text

line is segmented.

References

[1] T. Kohonen: “Self-Organized formation of topologically correct feature maps” , Biological
Cybernetics, Vol. 43 (2), 1982.

[2] T. Kohonen: “Self-Organization and Associative Memory” , Springer Verlag, Berlin, 1989.

[3] B. Angéniol, Gaël De La Croix Vaubois and J. Le Texier: “Self-Organizing Feature Maps
and the Travell ing Salesman Problem”, Neural Networks, Vol. 1, pp. 289-293, 1988.

[4] R. Durbin, D. Will shaw: “An Analogue Approach to the Travelli ng Salesman Problem
Using An Elastic Net Method”, Nature, 326, 689-691.

[5] G. Taubin and D.B. Cooper, “Recognition and Positioning of Rigid Objects using Algebraic
Moment Invariants” , SPIE, Geometric Methods in Computer Vision, pp. 175-186, 1991.

[6] E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem and J. S. B. Mitchell . “An
Eff iciently Computable Metric for Comparing Polygonal Shapes. IEEE Transactions on
Pattern Analysis and Machine Intell igence, vol. 13, 3, pp. 209-216, 1991.

[7] J.M. Molina, M.J. Martin, P. Isasi and A. Sanchis, “A Fuzzy Reasoning System for
Boundary Detection in Radiological Images” , IEEE International Conference on Fuzzy
Systems, Vol. 2, pp. 1524-1529, 1998.

[8] O. Okun, M. Pietikainen and J. Sauvola. “Robust Document skew Detection Based on Line
Extraction” . Proc. of the 11th Scandinavian Conference on Image Analysis (SCIA'99), June
7-11, Kangerlussuaq, Greenland, 457-464. 1999.

[9] C. Strouthopoulus and N. Papamarkos. “Text idenfication for document image analysis
using a neural network” . Image and Vision Computing, 16, 879-896, 1998.

[10] M. Nadler. “A survey of Document Segmentation and Coding Techniques” . Computer
Vision and Image Processing, 28, 240-262, 1984.

