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Jorge Ollero Hinojosa3

1 Dpto. Estad́ıstica e I.O., Escuela Superior de Ingenieŕıa, Universidad de Cádiz,
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Abstract. Feature extraction plays a fundamental role in the KDD
and Data Mining process. There are many algorithms for mining data
based in Principal Component Analysis (PCA), a powerful statistical tool
which is identical to the Karhunen-Loeve transform for pattern recog-
nition. Independent Component Analysis (ICA) is a recently developed
technique based on the assumption of statistical independence between
the components that acts as a remedy to the limitations of PCA.

In this paper we describe some applications of ICA in the KDD process
and in the Data Mining step of this process. We propose a fuzzy method
to quantify the information of a linear combination of input data and
a genetic algorithm to find the components with the optimal values of
such measure.

1 Introduction

Independent Component Analysis is a powerful statistical and computational
tool for revealing underlying factors from multivariate statistical data. It can
play a fundamental role in KDD process.

The structure of this paper is as follows: In the next section we describe
the classical KDD paradigm. Section 3 presents an overview on Independent
Component Analysis. In section 4 we describe the role that ICA plays in KDD
process. Section 5 proposes a fuzzy and genetic approach to finding independent
components.



Table 1. Number of pages found by google search engine containing the different terms.
Data Mining and KDD are the most used of them.

Term Number

Data Mining 596000
KDD 172000
Knowledge Discovery 104000
Information Discovery 20300
Data Pattern 11200
Knowledge Extraction 6460
Data Archaeology 1250
Information Harvesting 783

2 Data Mining and KDD

Many terms are used to refer to the art and technology of finding the knowl-
edge hidden from large volumes of raw data. Data mining, information discov-
ery, information harvesting, knowledge discovery in databases, data archaeology,
knowledge extraction, or data pattern processing are terms used by statisticians,
data analysts, and researches in the AI and machine-learning fields. The defini-
tions are changing and the use of these names depends on the application field
and they are sometimes used synonymously. The most used of these terms are
Data Mining and KDD, as we can see in Table 1.

The definition on which the KDD community is converging usually places
data mining as a particular step in the larger KDD process. KDD is the nontrivial
process of identifying valid, novel, potentially used, and ultimately understand-
able patterns in data. The result of this process is newly acquired knowledge
formerly hidden in the data. This new knowledge may then be used to assist in
future decision making. The KDD process in interactive and iterative, involving
numerous steps. The basic flow of steps can be summarized as follows [1–4]:

1. Data Selection: The extraction from a larger data store of only the data
that is relevant. This data extraction helps to streamline and speed up the
process.

2. Data Preprocessing: Data cleaning and preparation tasks that are neces-
sary to ensure correct results. Eliminating missing values in the data, ensur-
ing that coded values have a uniform meaning and ensuring that no spurious
data values exist are typical actions that occur during this phase.

3. Data Transformation: Finding useful features to represent the data de-
pending on the goal of the task, eliminating unwanted or highly correlated
fields so the results are valid.

4. Data Mining: The goal of the data mining phase is to analyze the data
by an appropriate set of algorithms in order to discover meaningful patterns
and rules and produce predictive models. The user can significantly aid the
data-mining method by correctly performing the preceding steps.
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Fig. 1. An overview of the steps in the Traditional KDD Paradigm.

5. Interpretation and Evaluation: While data mining algorithms have the
potential to produce an unlimited number of patterns hidden in the data,
many of these may not be meaningful or useful. This final phase is aimed at
selecting those models that are valid and useful for making future decisions.

The KDD process can involve significant iteration and can contain loops
between any two steps. This process is illustrated in Fig. 1. The data-mining
component has received the most attention in the literature. However, the other
steps are as important (and probably more so) for the successful application of
KDD in practice. Blind application of single data-mining step can find patterns
that appear to be statistically significant but, in fact, are not.

The Data Mining step of the KDD process has two types of goals: verification
of the user’s hypothesis and discovery of models (for prediction) and patterns
(for description).

3 An overview on Independent Component Analysis

Independent Component Analysis (ICA) is a recently developed technique based
on the assumption of statistical independence between the components. ICA can
be seen as an extension to principal component analysis. ICA is a much more
powerful technique, however, capable of finding the underlying factors or sources



when these classic methods fail completely. The goal of linear ICA is to find a
linear transform of the observed variables (given by a matrix W ) so that the
obtained variables (the components) are statistically as independent from each
other as possible.

The most used methods in feature extraction are principal component analy-
sis and factor analysis [5–7]. These methods are based on the classical assumption
of Gaussianity and only use the information contained in the covariance matrix.
There are alternative methods based on higher-order statistics, like projection
pursuit [8, 9] , redundancy reduction [10–12], and blind deconvolution [13–16].

The starting point for ICA is the very simple assumption that the compo-
nents are statistically independent and this fact implies that the independent
components must have nongaussian distributions.

There are several methods available for finding independent components,
based on different measures of independence or related quantities. In next sub-
sections we briefly review the existing techniques [17–21]. The equivalence of
these methods is shown in [22, 23].

3.1 Maximizing Nongaussianity

We must have a quantitative measure of nongaussianity of a random variable
such as kurtosis or negentropy. The kurtosis of a random variable, say y, denoted
by kurt(y), is defined by

kurt(y) = E[y4]− 3(E[y3])2 (1)

The kurtosis is zero for a gaussian random variable. There are nongaussian ran-
dom variables that have zero kurtosis, but they can be considered to be very
rare. The main problem to measure nongaussianity by kurtosis is that it is very
sensitive to outliers. The second important measure of nongaussianity is negen-
tropy. A fundamental result of information theory is that a gaussian variable has
the largest entropy among all random variables of equal variance. Based on the
entropy of a variable H, the negentropy, denoted by J is defined by

J(y) = H(ygauss)−H(y) (2)

where ygauss is a gaussian random variable of the same covariance matrix as y.
In practice, to maximize negentropy or the absolute valor of kurtosis, a gradient
algorithm is used [24].

3.2 Minimization of Mutual Information

Minimization of Mutual Information of the components: Mutual information is
the natural information-theoretic measure of the independence of random vari-
ables. Using the concept of entropy (or differential entropy for continuous vari-
ables), we define the mutual information I between m (scalar) random variables,
yi as follows

I(y1, y2, . . . , ym) =

m
∑

i=1

H(yi)−H(y) (3)



This measure is always non-negative, and zero if and only if the variables
are statistically independent. Although minimization of mutual information is
equivalent to maximizing the sum of nongaussianities, there are some differences
between these two criteria. When we use nongaussianity we force the estimates
of the independent components to be uncorrelated.

The independent components are those which have minimum entropy.

3.3 Maximum Likelihood Estimation

One interpretation of maximum likelihood estimation is that we take those pa-
rameters values that give the highest probability for the observations. We can
apply this principle to finding the coefficients of the mixture matrix with maxi-
mum likelihood.

4 ICA in KDD process

ICA can be used in different steps of the KDD process. In preprocessing and
transformation steps ICA obtains useful featuring to represent the data. In Data
Mining step, ICA can be used for prediction and description goals.

– ICA in preprocessing and transformation:

Later tasks will require a good data representation. Several principles and
methods have been developed to find a suitable linear transformation, basic
goal of these steps. These methods include principal component analysis, fac-
tor analysis, projection pursuit, independent component analysis, and many
more. Usually, these methods define a principle that tells which transform is
optimal. The optimality may be defined in the sense of optimal dimension
reduction, statistical ‘interestingness’ of the resulting components, simplicity
of the transformation, or other criteria, including application-oriented ones.
Other approaches are more used than ICA, but this tool must be included
in the researchers’ arsenal. Many papers which PCA is used can be revisited
using ICA approach.
ICA can be used to extract independent components from different kinds
of data, for example, color and stereo images, video data, audio data and
hyperspectral data.

– ICA in Data Mining:

In Data Mining step, ICA can be used for prediction and description goals.

• Prediction: Hyvarinen and Bingham shows [25] that when only a subset
of the input variables is observed, ICA can be used for regression, i.e.
to predict the missing observations. This regression is closely related to
regression by a multi-layer perceptron.

• Description: In the space of transformations perfomed by ICA, data
can form cluster where discrimination between the different ones can be
possible.



5 Proposed Method

All the described methods need to estimate the population measures using a
sample (the observed data). The estimation of negentropy, for instance, is very
difficult, and higher-order moments have to be used.

We propose a new ICA method based on a fuzzy information measure, and
we find the mixture matrix using simulated annealing and genetic algorithms.
Let A be a collection of fuzzy sets A = {A1, A2, . . . , Am} defined over a set S
with membership functions µi. If X = {x1, x2, . . . , xn} ⊂ A we, can consider the
fuzzy sets over the finite support X, and we can calculate the fuzzy cardinality
of each set Ai. There are different cardinality measures in the literature (see
[26]). We can define an information measure by:

−

m
∑

i=1

card(Ai)

M
log(

card(Ai)

M
) (4)

where

M =

m
∑

i=1

card(Ai) (5)

This formula is a fuzzy extension of entropy and if all Ai are crisp sets it coincide
with classical version given by Shannon. This concept is not the same as fuzzy
entropy. Fuzzy entropy is a measure of the degree of fuzziness of a fuzzy set
and this extended entropy is a measure of the information of observed data with
respect to Ai sets.

If we use the Ralescu’s cardinality measure [27], we are really doing a dis-
cretization of data, and the obtained measure is equal to entropy of discretized
data. If we use as cardinality measure the power of a fuzzy set introduced by De
Luca and Termini [28], the formula (4) becomes

−

m
∑

i=1

1

M

n
∑

j=1

µi(xj) log





1

M

n
∑

j=1

µi(xj)



 (6)

The goal is finding components which minimum value of this measure, The
procedure is the same as in section 3.2, but using the alternative information
measure. Given a linear combination of the observed data, we use the fuzzy sets
shown in figure 2. This election ensures that the proposed measure is invariant
for invertible linear transformations.

A genetic algorithm [29, 30] is used to finding mixing matrix elements. GAs
operate iteratively on a population of matrices, each of which represents a can-
didate solution to the problem. The initial population is generated randomly
and fitness is given by the information measure. Mutation operator changes the
value of a specific element of the matrix and the crossover operator interchanges
rows between two matrices.
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Fig. 2. Membership functions of fuzzy sets.

Fig. 3. The observed data

5.1 An Example

The observed data are shown in Fig. 3. Data are strongly correlated. In spite
of this, we can apply the method to find the estimates of the original source
signals.

Fig. 4 shows the estimates of the original source signals, estimated using only
the observed mixture signals. The original signals are not shown, but they are
very similar to what the algorithm found. (They could be multiplied by some
scalar constants). In this example we use GA to search over the space of all
possible mixture matrices with integer elements between −100 and 100.

This method can also be used to find the components with maximum entropy.
These components compress the information of the original signals. They are the
“principal components” in an information-theoretic sense. In Fig. 5 are shown
three different examples of such components. Each of these components compress
the information of the original signals: to code one of these components are
necessary the same number of bits used to code the three original signals.



Fig. 4. The independent components found by the method. The original signals were
found very accurately

Fig. 5. The maximum entropy components found by the method. The original signals
can be obtained from one of these components with a small error



5.2 Conclusions

Independent Component Analysis is a powerful tool that can be used in different
steps of the Knowledge Discovery in Database process. In this paper we propose
a fuzzy and genetic approach and show a satisfactory application of this method.

In future papers, we will use genetic programming to find nonlinear mixtures
of observed data using symbolic regression [31–33].
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