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Abstract. This paper deals with the application of Neural Networks
to binary hypothesis tests based on multiple observations. The prob-
lem of detecting a desired signal in Additive-White-Gaussian-Noise is
considered, assuming that the desired signal observations are also gaus-
sian, independent and identically distributed random variables. The test
statistic is then the squared magnitude of the observation vector and the
optimum boundary is a hyper-sphere in the input space. The dependence
of the neural network detector on the Training-Signal-to-Noise-Ratio and
the number of hidden units is studied. Results show that Radial Basis
Function Networks not only are more robust when varying the Training-
Signal-to-Noise-Ratio and the number of hidden units, but the best ap-
proximation to the Neyman-Pearson detector is achieved with them.

1 Introduction

This paper deals with the application of Neural Networks (NN) to binary hy-
pothesis test based on multiple observations. The problem of detecting a desired
signal in Additive-White-Gaussian-Noise (AWGN) of zero mean and variance o,
is considered, assuming that the desired signal observations are also gaussian,
independent and identically distributed random variables with zero mean and
variance og. This signal and interference model is one of the most used in the
analysis and design of many communications and radar systems. For example, it
is used to model the received signal in pulsed scanning radar systems where the
desired target consists of many independent scatterers of approximately equal
echoing areas, and the received pulse magnitude varies from pulse to pulse [1].
In this case, the likelihood ratio detector (LRT) based on the Neyman-Pearson
statistical hypothesis test is an optimum one [2], [3], but the performance of this
detector relies on the knowledge of the interference and desired signal probabil-
ity density functions (pdf) and power spectra. In actual situations, the received
signal characteristics are unknown and differ from those supposed in the model.
So, the resulting performance of the LRT detector based on this model will be
worse [4].
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Neural Networks (NN) are proposed as a solution, due to their ability to
learn from their environment, and to improve performance in some sense through
learning. NN can implement the Bayessian optimum detector [5] and it has been
demonstrated [6],[7] that the back-propagation algorithm applied to a simple
feed-forward network approximates the optimum Bayessian classifier, when using
the mean square error criterion.

The objective of this work is the design of neural network based detectors
capable of approximating the Neyman-Pearson detector performance in an un-
known environment where the characteristics of the desired signal and the inter-
ference are unknown and may vary with time. Multi-Layer Perceptrons (MLPs)
and Radial-Basis Function Networks (RBFNs) are considered, comparing their
performance to the LRT detector for white gaussian signals in white gaussian
interference. We analyze the influence of training parameters like variances of
signal and interference (o, and o4) and network structure, in order to find the
advantages and limitations of both detection schemes.

2 The optimum detector

Given a set of n observations, 21, 29, ..., z, which define a point in a n-dimensional
space, z = (21,22, ..., 2,7, the detection system has to decide if they are orig-
inated either from noise only (the null hypothesis Hp) or from both noise and
signal (the alternative hypothesis H;). The objective is to minimize a risk func-
tion that is defined as the average cost [2]:

1
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where:

— P(D;|Hj) is the probability of deciding H; when H; is the true hypothesis.

— P(Hj) is the prior probability of hypothesis H;.

— Cjj is the cost associated with deciding H; when the true hypothesis is the
hypothesis Hj;.

To specify detector performance, the probability of detection (Pp) and the
probability of false alarm (Pr4) are used. The probability of detection is the
probability of deciding in favor of H; when it is the true hypothesis. The prob-
ability of false alarm is the probability of deciding in favor of H; when Hj is
true.

When the prior probabilities and the costs can not be determined, it is usual
to seek a decision strategy that constraints Pra to an acceptable value while
maximizing Pp. The test is then said to be a Neyman-Pearson Test [2], also
called "the most powerful test” (MP), since it achieves the largest Pp among all
the test that have the same Pr4.

If the observations under each hypothesis are gaussian independent, identi-
cally distributed random variables, the conditional density functions f(z/Hy)
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and f(z/H,) are multivariate normal probability density functions. Assuming
that under Hy, 21, 29, ..., 2z, have zero mean and variance o,, while under H;
they have zero mean with variance o, + o, the desired Signal-to-Noise Ratio
(SNR) can be defined as (2):

SNR = 10log,,(snr) = 101og,o(22) (2)
a

n

The likelihood functions f(z/Hy) and f(z/H;) are given by (3)and (4).
1 1

flz/Hy) = (27 (snr +1))n/2 eij(72(snr + 1)ZTZ) (3)
fla/Hh) = Grrseap( =52 (W

and the likelihood ratio is (5):
f(z/Hy) 1 snr T
f(z/Hy)  (snr+1)n/2 P 2(snr 4+ 1)z z ®)

According to the Neyman-Pearson criterion, the optimum decision rule is
given by (6), [2].

1 snr Hy
—eap( z'z) 2 1o (6)
(snr + 1)/ 2(snr+1) I

where the threshold 7g is determined from the specified value of Pr,4. By tak-
ing logarithms on both sides and rearranging terms, (6) can be transformed into
(7) showing that the test statistic is the squared magnitude of the observation
vector z.

r, Hsnr 41

z =z
H, Ssnr

nmo In(snr +1) £ (7)

Figure (1) shows the Pp versus SNR curves for different values of Py,
for the LRT detector based on the Neyman-Pearson statistical hypothesis test.
These will be the desired results to be obtained using the NN based detector.

3 Neural network based approach

In this approach, Multi-Layer Perceptrons (MLPs) and Radial-Basis-Function
Networks (RBFNs) are designed for approximating the LRT detector based on
the Neyman-Pearson statistical hypothesis test. The structures of the detectors
are shown in figure 2. In both cases, the NN is finished with a hard threshold
detector. If the output of the network is greater than the threshold, T', we decide
that hypothesis H; is true. On the other hand, if the output of the network is
lower than T', we decide that hypothesis Hj is true.

Cybenko theorem [8] states that a single hidden layer is sufficient for a MLP
to compute a uniform e approximation to a given training set represented by
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Fig. 1. LRT detector performance for different values of Ppa

Fig. 2. MLP (left) and RBFN (right) structures
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the set of inputs and the desired target output. Because of that, an MLP with a
hidden layer has been considered. The activation function of all the neurons of
the hidden layer is the logistic one given in (8).

1

Lz) = 1+ exp(—x)

(®)

The activation function of the output neuron is lineal, because when using a
logistic function the network output ranges from 0 to 1 producing a saturation
effect and a minimum value of Pr 4 for which the threshold equals 1. For lower
values of Pg4, the threshold can not be increased and Pry and Pp remain
constant. This minimum value of Pr4 depends on the Training-Signal-to Noise
Ratio (TSNR) and the network structure.

In Radial-Basis Function Networks, the function associated to the hidden
units (radial-basis function) is usually the multivariate normal function. For the
i — th hidden unit it can be expressed using (9).

_lcil=
BRCLE;

where C; is the covariance matrix, which controls the smoothness properties
of the function (is a nzn real matrix).

Using the weighted norm [9], whose squared form is defined in (10), equation
(9) can be transformed into equation (11).

—(Z — ti)TC;l(z — ti)
2

Gi(2) exp{ } (9)

Iz = 5x"C'x (10)
Ci|=
Gi(z) = (%')g exp(—||x — ti]|2,) (11)

Taking into consideration that the hidden unit output is multiplied by a
weight that will be adjusted during training, the RBF function G(-) in figure 2
is:

G() = eap(—a?) (12)

The matrices C; can be set to a scalar multiple of the unit matrix, to a
diagonal matrix with different diagonal elements or to a non-diagonal matrix.
In this case we have set them to a scalar multiple of the unit matrix. The
experiments we have carried out are described in the next sub-section.

3.1 Description of experiments

Training sets composed of 2,000 16-length patterns of interference and desired
signal-plus-interference randomly distributed, have been built for different val-
ues of Training-Signal-to-Noise Ratio (TSNR) ranging from —3dB to 25dB, in
order to study the dependence of the network performance on this parameter.
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For training the MLPs, the Levenberg-Marquardt algorithm has been used [10].
For early stopping the MLP training process, a validation set with the same
characteristics has been built for each TSNR. For training the RBFNs, we have
applied a three learning phases strategy [9][11][12]:

1. The centres of the radial basis functions are determined by fitting a gaussian
mixture model with circular covariances using the EM algorithm. The mix-
ture model is initialized using a small number of iterations of the k-means
algorithm.

2. The basis function widths are set to the maximum inter-centre squared dis-
tance.

3. The hidden to output weights that give rise to the least squares solution can
be determined using the LMS algorithm.

Once the MLPs and the RBFNs have been trained, the Pp has been evaluated
for different Signal-to-Noise-Ratios (SNRs) and different values of Pr 4, in order
to assess the networks generalization capability. These experiments have been
repeated using different number of hidden units, ranging from 8 to 56 in steps
of 8, in order to examine the dependence of performance on network size. The
most relevant results are presented in the next sub-section.

3.2 Results

Due to the limitation in space, only the most relevant results are presented.
Curves of Pp versus SN R values ranging from 0dB to 15dB are presented for
two values of Pry, 5-107% and 1.25-10~%. Figure 3 shows the performance of a
MLP with 8 hidden units for a Pr4 of 5-107% and 1.25- 1074, respectively, and
different TSNRs. Figure 4 shows the performance of a MLP of 32 hidden units
and the same values of Pr4 and TSNR.

- TSNR=-3dB

& TSNR=-3dB | |

— TSNR=15d8

SNR(dB) SNR(dB)

Fig. 3. MLP with 8 hidden units and Ppa = 5- 107" (left) and Prsa = 1.25-107*
(right)
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Fig. 4. MLP with 32 hidden units and Pra = 5-107% (left) and Pra4 = 1.25-107*
(right)

The first conclusion that can be extracted from the results is the high de-
pendence of the MLP performance on TSNR. Networks trained with very low
TSNR values can not determine a suitable boundary. On the other hand, MLPs
trained with high values of TSNR present better performance than in the former
case, but not the best. The best performance for the MLP with 8 hidden units
and a Pry = 5-107% is obtained for a TSNR of 7dB. When considering lower
Pr 4 values, it is more difficult to determine the best value of TSNR for the set
of SNR values. A trade-off value of TSNR=7dB can be determined although in
a practical situation low values of SNR are more likely and a TSNR value of 3dB
should be selected.

When the number of hidden units is increased, the generalization capability
of the network clearly improves for all the TSNR values. For the MLP with 32
hidden units the best TSNR for all the considered SNRs and Pg4 values is 1dB.

Taking into consideration that the test statistic is the squared magnitude of
the observation vector, the optimum boundary is a hyper-sphere in the input
space. Each hidden unit of a MLP determines a hyper-plane in the input space,
so the optimum boundary has to be estimated from n hyper-planes. It seems
clear that the more hidden units the better approximation can be obtained. But
the training of big MLPs is very complex due to problems related to local minima
and over-fitting.

Figures 5 and 6 show the performance of RBFNs for different values of TSNR
and Pp 4. When they are compared to figures 3 and 4, the following conclusions
can be extracted:

1. The dependence on TSNR is less important.
2. The dependence on network size is also smaller.
3. The best results are usually obtained for the lower values of TSNR.

This better behavior of the RBFNs can be explained taking into considera-
tion the optimum boundary to be approximated. In this case, each hidden unit
determines a hyper-sphere centered in representative points. So it is easier to
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approximate a hyper-sphere and the influence of the number of hidden units is
less important.

—&- TSNR=-3dB —A- TSNR=-3dB

~o- TSNR=3dB 6~ TSNR=3d8
SNR=!

= NR=! 4
— TSNR=11dB — TSNR=11dB
— TSNR=15d8 — TSNR=15d8

SNR(dB) SNR(dB)

Fig. 5. RBFN with 8 hidden units and Pra = 5-107* (left) and Ppa = 1.25-10~*
(right)

&~ TSNR=-38
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Fig. 6. RBFN with 32 hidden units and Pra = 5-10"* (left) and Ppa = 1.25-10~*
(right)

Finally, the best neural detectors are compared with the LRT detector based
on the Neyman-Pearson statistical hypothesis test. Figure 7 shows that the
RBFN detector closely approximates the LRT one, but the MLP performance is
clearly far from this optimum detector, as it can be expected from the previous
reasonings.

4 Conclusions

In this work, the design of Multi-Layer Perceptrons and Radial-Basis Function
Networks capable of approximating the Neyman-Pearson detector performance
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Fig. 7. Comparison of the best NN detectors and the LRT detector

are considered. For comparison purposes the detection of a desired signal in
Additive-White-Gaussian-Noise is considered, assuming that the desired signal
observations are also gaussian independent and identically distributed random
variables. For such a problem, the test statistic is the squared magnitude of the
observation vector, so the optimum boundary is a hyper-sphere in the input
space.

The dependence of the neural network detector on the Training-Signal-to-
Noise-Ratio and the number of hidden units is studied. Results show that RBFNs
not only are more robust when varying the TSNR and the number of hidden
units, but the best approximation to the Neyman-Pearson detector is achieved
with them. This is due to the fact that RBFNs approximate the detection bound-
ary by a combination of hyper-spheres, while MLPs approximate it from the
hyper-planes determined by the hidden layer.
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