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Abstract. This paper presents an Iterative Learning Control strategy
for a fedbatch phenol biodegradation process. One of the important fea-
tures of the proposed approach is that it uses only a few off-line output
measurements, circumventing the well-known drawback of insufficient
on-line measurement capability in many in situ fermentation control
applications. Since a zero-order hold input policy is shown to lead to
misleading control results, the key technique was to generate the control
profile with a piecewise continuous functional basis. Simulation results
are presented to demonstrate the feasibility of the proposed ILC strategy.

1 Introduction

Mathematical modeling, identification and real-time control of phenol biodegra-
dation processes, and of fermentation processes in general, represent a challeng-
ing area of endeavor for biotechnologists and control engineers, mainly due to
the complexity of biological systems. The main goals in applying control meth-
ods to such living systems are to improve operational stability and degradation
efficiency. As an area for control applications, the field of fermentation processes
technology is still exhibiting a number of interesting characteristics that can
challenge the efficiency of any control scheme. In fact, the control design for
most biotechnological processes is made difficult by at least two well-known ma-
jor factors [3]. First, the processes involving living organisms exhibit large non-
linearities, strongly coupled variables and often poorly understood dynamics.
Second, real-time monitoring of many key process variables, which are needed in
advanced control algorithms, is hampered by the lack of reliable on-line sensors.

The concern of phenol degradation, an hazardous pollutant contained in in-
dustrial wastewater from many chemical plants, oil refineries and agrochemistry
plants, has been generating considerable research interest in technologies for bio-
logical treatment of industrial wastes [6]. Most of the currently used technologies
are based on aerobic—activated sludge systems which are known to be sensitive



to fluctuations in the pollutant load, especially in the case of inhibitory or toxic
substrates as phenol.

In this paper the attention is focused on fedbatch reactors, in which sub-
strates or pollutants are fed either intermittently or continuously during the
course of fermentation. This operating mode offers many advantages —at least
from an industrial viewpoint— over batch and continuous cultures. The main ad-
vantage is concretely economical, since improved productivity may be obtained
via providing controlled conditions in the supply of inhibitory substrates [10].
However, in contrast to continuous-flow reactors which operate continuously in
steady-state, fedbatch reactors are permanently in a transient regime and there-
fore present challenging control design problems. Different trends for the design
of monitoring and control algorithms for fedbatch fermentation processes have
emerged, e.g. control approaches based on optimal [9] or adaptive [2] type argu-
ments. The main drawback of the first trend is that model-based optimal control
method, which provides a theorically realizable optimum under the assumption
of a perfectly known model, could be dangerously misleading in a real-life im-
plementation context due to the inherent uncertainty of the process dynamics
and to the large variations of operating conditions. On the other hand, model-
independent adaptive controllers do not guarantee a priori optimality of the
control policy results. Finally, combining both trends, the approach based on
the concept of minimal modeling of the kinetics, which does not suffer from the
above difficulties, has emerged to fill the gap between modeling accuracy and
control needs [3,?]. In these references, it is also demonstrated how optimal -in
the sense of optimal productivity- control of fedbatch processes could be replaced
by a common nearly optimal regulation control case.

An Tterative Learning Control (ILC) strategy for a fedbatch phenol degrada-
tion process is investigated. The process model, which has been experimentally
validated in [7] and [8], is used to illustrate that ILC is applicable to fedbatch
fermentation processes. The choice of an ILC technique, justified by the repeti-
tive nature of fedbatch cultures, is motivated by the following advantages upon
standard control methods:

— since ILC uses information from previous executions of the task in order
to improve tracking performance from trial to trial, it does not require any
on-line measurement, and hence nor on-line sensor,

— the proposed ILC allows limited off-line measurement analysis to be carried
out,

— ILC design is model-independent.

A preliminary evaluation of the optimal — or at least a good approximate— phenol
concentration setpoint, which fixes the influent flow rate and the effective yield of
phenol consumption, for the fedbatch reactor has been realized taking advantage
of the prior modeling study presented in [7]. Due to the importance of achieving
acceptable control performances over wide ranges of operating conditions and in
the presence of potential uncertainties and/or disturbances, a practical applica-
ble ILC controller that only needs off-line measurements of phenol concentration
is proposed. Since in the case of large output sampling periods, zero-order hold



input profiles led to bad control behavior, piecewise continuous functions (linear
and polynomial) are tested to reconstruct the input profile between samples.

The paper is organized as follows. In section 2, the phenol degradation process
model is briefly described. The control objective is presented in section 3. The
ILC control algorithms are presented and discussed in section 4, on the basis of
a simulation study. A general conclusion ends the paper.

2 Process Modeling

In biotechnological processes, bacterial growth behavior is usually described by a
set of non-linear equations derived from mass-balance considerations. The follow-
ing equations describe the fedbatch phenol degradation by Ralstonio euthropha:
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where X is the biomass concentration (g/l), S is the phenol concentration
(g/1), Sin is the influent phenol concentration (g/l), V' is the working volume (1)
and @ is the feed flow rate (I/h). P, which corresponds to the 2-hydroxymuconic
semialdehyde (2-hms) concentration (a reaction intermediate of yellow color),
was linearly correlated to the yellow coloration formation [7]. u, ¢s and v, are
the specific growth rate, the specific rate of phenol degradation and the specific
rate of yellow color formation, respectively.

Although the growth of micro-organisms depends on many environmental
conditions (temperature, pH, mineral salts, etc.), the kinetic parameters gener-
ally express the dependence on the main process variables. Preliminary batch
cultures have allowed the kinetic parameters to be established [7]. The growth
behavior of R. eutropha has been studied in a previous work and the double
effect of inhibition and limitation of phenol concentration has been modeled by
an Haldane equation:

S

_ 2
K+ S+ 2~ @)

M= Hmax
It has also been shown that u and g5 are correlated by a linear relationship:

qs = p/Y (3)

and that the specific phenol degradation rate is expressed by:

vp = a1t + ap (4)



3 Control Objective

Fedbatch control problem is an optimal control problem. Since the objective of
phenol degradation processes is to maximize the final quantity of phenol con-
sumed in a minimal time, a global criterion may be given by:
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where 71, 72, 73 and -4 are weighting coefficients, SoV} is the initial quantity
of phenol, S;V; is the residual quantity of phenol (generally equal to zero) and
ty is the shutdown time. This non-quadratic criterion and additional constraints
in the process variables force to use techniques which involve iterations towards
the optimum, based on Pontryagin’s Maximum principle, Green’s theorem or
Dynamical Programming. These techniques are not well adapted to implement
closed-loop control algorithms, but they allow to determine open-loop optimal
profiles of process variables. However, optimal control is a very model-sensitive
technique. It requires a complete knowledge of the process model, including an
analytic expression for all specific rates, e.g. equations (2) to (4) for the phenol
degradation process. However, in biotechnological applications this assumption
is in practice never fulfilled and, moreover, even if the perfect process model
could be available, real-life implementation is still hampered by the lack of re-
liable sensors suited to real-time monitoring of the process variables needed in
the controller. For the phenol degradation process, besides a perfect analytical
knowledge of the specific rates y, ¢s and v, and corresponding parameters, the
control requires on-line measurements of all state variables X, S, P and V.

A more realistic and practical solution consists in implementing closed-loop
controllers which regulate one —if possible— process variable. The aim of such
sub-optimal solution is to replace the given optimal problem by a more common
regulation problem. This standard regulation problem can then be solved by
any feedback control loop, e.g. a fedbatch PI control of phenol degradation in
[8] or adaptive linearizing control of Penicillin G production in [11]. As in any
standard feedback control procedure, at least one on-line measurement or on-line
estimation of process variable was required in all these studies.

In the case of phenol degradation by R. eutropha in fedbatch fermentations,
it has already been shown [7,8] that the control objective, corresponding to the
maximization of the phenol degradation rate, may be stated in terms of phenol
regulation to some sub-optimal setpoint (i.e. S™ = 0.1g/l). In the proposed
ILC design strategy, only off-line analysis of phenol concentration are required.
Thus, this approach may be considered as being in between the classical closed-
loop controls and the open-loop systems commonly used in industrial fedbatch
fermentations because of the lack of reliable on-line sensors. The feed flow rate
Q(t) corresponds to the control input of the system.



4 TIterative Learning Control

In fedbatch fermentations for phenol degradation, the task is executed in a finite
time interval while the same task will be operated repeatedly. In such a case,
the idea of iterative learning control is clearly applicable to improve the control
performances of phenol degradation processes from run to run.

It should be pointed out that the ILC is not an open-loop control operation,
although the ILC only modifies the input command for the next repetition [1].
ILC is closed-loop in repetitions since updates are performed for the next rep-
etition using the feedback measurements of the previous repetition, as opposed
to the closed structure of conventional controllers in time which updates the
control signal of the next time step using the feedback at current or past time
steps.

Let an operation of the phenol degradation system to be controlled be de-
noted by subscript ¢ and let time during a given trial be denoted by ¢, where
t € [0, N]. The usual way to implement ILC is to use the following updating
formula for the input signal w;(t) [5]:

it (t) = H(q) (ui () + L(g)ei (1)) (6)

where H(q) and L(q) are linear filters, not necessary causal, e;(t) is the output
tracking error and ¢ the is the delay operator in the i-direction.

4.1 First-order ILC Algorithm

The first form of ILC selected for the phenol degradation system corresponds to
the following P-type, in the i-direction sense, updating formula [5]:

Qit1 () = Qi (t) + kpei (1) (7

where k, is the learning gain and the control error is defined as e;(t) =
S™ — Si(t), S" being the phenol setpoint.

Model simulation. The numerical values used for model simulation are 4, =
0.41h71, Ks = 0.002g/1, K; = 0.35g/1, Y = 0.68, ap = —0.085 and oy = 13.
The feeding phenol concentration is set to S;, = 50¢/l, while initial conditions
were X (0) = 0.2¢/1, S (0) = 0.15¢/1, P (0) = 5g/l and V (0) = 0.21.

It should be emphasized that the phenol degradation model presented in this
work, which was previously validated by experimental batch data, is used to
illustrate the applicability of ILC to phenol degradation using fedbatch systems.

Figure 1 illustrates the control error and input evolution in the ¢ direction
for two sampling periods T3 = 0.5h and T5 = 1h. As shown in this figure, a
zero-order hold input policy has not resulted in acceptable control performance.
This occurrence can easily be explained by the fact that the substrate feedback
control goal for fedbatch fermentation processes consists in keeping an inherently
unstable type of behavior under control [3,11], generally resulting in time-varying
profiles of the actual process input, i.e. the feed flow rate Q(¢). Hence, freezing
the control input during a too large period of time comes against its natural



time-varying behavior and could lead, as shown in the simulation results, to
misleading control trajectories.
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Fig. 1. First-order ILC for T4 = 0.5h, T» = 1h; input and error evolution (zero-order
hold case).

In this context, the idea of using some interpolation method in order to recon-
struct a continuous input profile between two sampling period arises to circum-
vent this kind of problem. Besides, the fact of maintaining a large measurement
period, instead of simply reducing it, is justified by the important economic as-
pect of minimizing the number of off-line phenol analysis —and consequently, the
operator availability- in a real-life in situ implementation. In Figure 2, simula-
tion results are illustrated for cubic-polynomial piecewise continuous function for
input interpolation. Improved convergence behavior is obtained, although faster
transient responses correspond to the shorter sampling period 73 = 0.5h. A
residual oscillation is present on both the error and the input Q(¢) evolution. In
order to improve this kind of convergence characteristic, a P-type ILC approach
that takes into account the next step, in the time direction sense, is investigated.

4.2 Arimoto P-type ILC Algorithm

The second form of ILC corresponds to the Arimoto P-type algorithm [1] up-
dating formula:

Qit1 (1) = Qi () + kei (t +1) (8)

where k is the learning gain.
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Fig. 2. First-order ILC for T1 = 0.5h, T> = 1h; cubic input interpolation.

Figure 3 illustrates the control error evolution in the i-direction using cubic
polynomial input interpolation for different sampling periods 73 = 0.5h and
T =1h.

As shown in Figures 2 and 3, the difference between the first-order ILC
and the Arimoto P-type ILC control performances is significant. The P-type
ILC algorithm has demonstrated improved robustness to regulate the phenol
concentration at the end of the culture, i.e. when the control input ¢ is much
higher according to its exponential profile. At the present, the convergence of
the ILC algorithms using an interpolation technique between samples is being
studied. Preliminary results seem to be similar to those presented in [4] for a
classical ILC.

4.3 Variable sampling time

In order to minimize the off-line laboratory analysis, a preliminary study was
carried out with a reduced number of samples that were strategically chosen on
the basis of the process knowledge. As the ILC approach is closed-loop in the
i-direction but not in time, a periodic sampling time is not required.

From the expert knowledge of the process, it was deduced that the control
action is significantly more important at the end of the fermentation. Since this
shutdown time is known in the context of fedbatch fermentations, three sampling
points were chosen at the end of the culture (i.e. 6h, 7h and 8h), one when
S™ is reached for the first time (i.e. 1h) and one at the middle of the fedbatch
fermentation (i.e. 4h). Figure 4 shows the ILC P-type control and error evolution
for these variable sampling points. Relatively good ILC convergence was obtained
although the i-iteration transient convergence is a little slower when compared to
the results of section 4.2, e.g. the Figure 4 shows that convergence is not garantied
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Fig. 3. P-Type ILC for Th = 0.5h, T> = 1h; cubic input interpolation.

yet at iteration ¢ = 30. These preliminary results show the applicability of the
proposed approach. Further studies concerning the convergence of the algorithms
are in process.
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Fig. 4. P-Type ILC for variable sampling period T'; input and error evolution.

5 Conclusions

A first-order and the Arimoto P-type ILC algorithms for phenol degradation in
fedbatch fermentations were considered. Pre-evaluation of a nearly optimal phe-
nol setpoint for fedbatch cultures led to the design of an easy-to implement ILC
regulation problem. Due to misleading control performances in the case of zero-
order hold input policy, the feed flow rate profile was modified using piecewise



continuous functions between samples. Simulation studies shown that the P-type
ILC and large off-line measurement periods are sufficient to drive the output er-
ror to converge to zero after a relatively low number of iterations. Finally, the
preliminary results of a variable sampling time strategy were presented, showing
the applicability of this ILC strategy to fedbatch fermentation processes.
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