
Runtime Agent Training of Negotiation Protocols

Mercedes Amor, Lidia Fuentes, Mónica Pinto and José María Troya

University of Malaga
{pinilla,lff,pinto,troya}@lcc.uma.es

Abstract. The increasing number of e-markets poses a big challenge to e-
consumers. The proliferation of auction sites arises the problem of different
negotiation protocols, that is, the protocol interoperability issue. We focus on e-
commerce. Specially on auctions as negotiation protocols. Usually, bidding
agents are offered to be used by customers by the auction sites, and they are not
able to participate in auctions placed on different sites. This paper proposes the
training of e-commerce agents to support new negotiation protocols at runtime.
Agents upload the definition of the new negotiation protocol through a training
protocol. This way, agents can adapt dynamically to new interaction scenarios,
in the context of e-commerce. Now, agents would be able to travel searching
for the best auction site being able to participate in any auction (English, Dutch)
after the simple training proposed in this paper.

1 Introduction

Nowadays, there is a growing number of agent applications on the Internet. Most of
them focus on e-commerce. Not only big companies offer a web site for on-line
shopping, but also, particular users can put on sale their goods without mediator.
Agents help users in the task of dealing in and are used to automate some market task.
For example, agents are able to search among several offers on user behalf, finding
out the best suited product according to user preferences. Agents are capable to
participate in different markets, auctions, negotiating through a well known protocol.
One of the preferred negotiation mechanism is the auction, and there are lots of them
on the Internet. An auction is a kind of market based on competition: the seller try to
obtain the higher price, and the buyer try to pay the less possible[1]. There are many
types of auctions, but in all of them, the auction format is set by the seller, but the
price is set by the bidders. Hence auctions involve different negotiation protocols,
implying different strategies for bidding. The best auction depends on many variables,
so an e-commerce agent should adapt its behaviour to the different markets.
The role of agents in automated e-commerce transactions can be advertisers, sellers,
buyers and brokers. Agents are used to save time looking for the products and
negotiating the sale. Different negotiations behave according different protocols, so
all participants must agreed in the interaction protocol used. In agent-based solutions
negotiation protocols are pre-establish. Sometime the negotiation protocol is part of
the negotiation itself, along with the general conditions. It would be desirable that e-
commerce agents understand any negotiation protocol, but this is not common.

Therefore, e-commerce agents can engage only those markets that negotiate with
agent understood protocols.
Protocol agreement can be guaranteed when participants use standards of
interoperability. The standard FIPA defines some standard interaction protocols for
negotiation like English[5] and Dutch[6] Auction interactions protocols, or the
contract net[3] and iterated contract net[4] interactions protocols. Although the FIPA
negotiation protocols can be parameterised for different protocol instantiation, they do
not cover all the possible auctions or negotiation policies.
In auctions, the auctioneer (i.e. the seller) is the person that determines the negotiation
protocol and the buyers must understand it or be adapted to new bidding rules. So, the
challenge of agent-based auctions is the runtime adaptation of agents behaviour to
new negotiation protocols.
In this paper we describe our proposal to increase the interaction capability of agents
in the context of e-commerce. This capability can be measured by the interaction
protocols it support or understand. We propose to extend agent capability using a
training protocol that perform the runtime loading of new negotiation protocols. Our
main contribution is to provide agents a major flexibility to interact. Our trend is
achieve an open agent systems regarding interoperability issues. Our approach don’t
deal yet with the dynamic loading of new code, which is not supported by almost any
standard agent platform In the first section we will describe the protocol that allow the
loading of new negotiation protocols. Section 2 described how the new protocol is
described to be uploaded. In section 3 introduces an example about the utility of the
approach in a real scenario. Section 4 looks at related work in this area. Finally, in
section 5, we draw our conclusions and future work.

2 Training agents to support new negotiation protocols

In this section we are going to define the training protocol for negotiation (TPfN), that
will allow buyers to adapt their internal behaviour to the auctions they are interested
in participate.
Basically, training an agent means to give it the correct instructions. The terms used
in the instructions description define an ontology. An ontology enables knowledge
sharing and reuse[2]. Hence, we need to define, at least, two ontologies. One of them
will define terms related with protocol teaching, and the other one will define a
common vocabulary to define data and actions used inside the specification of the
negotiation protocol.
The TPfN is defined using FIPA performatives and protocols, so that it can be
implemented by any standard FIPA-compliant agent platform. XML is used as agent
content language. Actions, variables, predicates can be expressed easily in XML,
without endangering key extensibility inherent to the language.
Basically, the purpose of the TPfN is to make a foreign agent to upload a new
negotiation protocol. New negotiation protocols are defined in terms of a state
transition diagram expressed in XML, where the vocabulary and definitions used are

described in an ontology. The terms used in the definition of the negotiation protocol
refer to the actions that a buyer agent must execute during an auction.
 Query-if

:sender Trainer
:receiver Trainee
:content (
<?xml version="1.1"?>
<sl:and>
 <sl:not>
 <sl:understand-protocol>
 <data:protocol-ident value=”Vickrey-auction”/>

 </sl:understand-protocol>
 </sl:not>
 <sl:commit-ontology>
 <data:ontology-ident value=”e-market”/>
 </sl:commit-ontology>
</sl:and>
)
:language xml1)

request
:sender (trainer)
:receiver (trainee)
:content
<?xml version="1.1"?>
<action:train>
 <data:protocol-ident>
 Vickrey-auction
 </data-protocol-ident>
 <spec:protocol>
 (XML specification of STD)

</spec:protocol>
</action:train>

Trainer Trainee

request-train-protocol

[protocol trained]

not-understood

refuse-training

agree-training

failure-training

inform-trained

Query-if-need-train

not-understood

refuse-train

inform-need-train

Inform
:sender Trainer
:receiver Trainee
:content (
<?xml version="1.1"?>
< sl:not>
 <sl:understand-protocol>
 <data:protocol-ident>
 Vickrey-auction
 </data-protocol-ident>
 </sl:understand-protocol>
</sl:not>
)
:language xml1)

Fig. 1. Training Protocol for Negotiation Interaction Diagram.
There are many ways to give information to agents. To maintain uniformity with
typical agent interaction, we propose to use standard interaction protocols. Firstly,
using FIPA Query Interaction Protocol, the trainee agent is requested to inform trainer
agent about whether it understands a specific protocol and commits a specific
ontology or not. The content message means something like “If you commit the e-
market ontology, do you want to train the Vickrey auction protocol?” If the agent
wants or needs to be trained, it must send a message informing that it does not
understand that protocol. Either it can send a not-understand message, if it do not
understand the content message, or can refuse to be trained, probably because it
doesn’t commit the specific domain ontology.
Once the agent agrees, the trainer agent instructs the trainee agent, using the FIPA
Request Interaction protocol. The request message contains the protocol specification
described in XML as agent content language as shows fig.1. The result of this request
message is to upload a new negotiation protocol described in the next section. After a
successful uploading, the trainee agent will inform the trainer about the results.

2.1 Protocol specification

The specification of a negotiation protocol is not straightforward, some important
aspects have to be consider. It is not a mere protocol specification for simulation or
verification purposes, we have to specially consider how to express domain-specific
primitive actions that have to be executed by the trainee agent. That is, the agent must
learn how to attach someway the protocol interaction with its internal actions.
The protocol is specified with a state-transition machine, as usual. The state machine
allows to express that if an agent is in a state and receives a message, it will perform
some actions and probably will change to a new state. But the challenge is to adapt
agents’ behaviour depending on the message, its content and its internal state. The fig.
2 shows the state transition diagram of an agent that follows the Vickrey Interaction
Protocol.

Waiting
for

Auction

Waiting
for Cfp

Inform-start-of-auction/

Waiting
for

Inform

cfp/ propose

inform/

inform/

cfp/not-understood

Inform/

Do
payment request/

Fig. 2. State transition diagram for Vickrey Auction Interaction Protocol

The protocol is expressed using XML. We use XML schemas to describe the correct
structure of XML elements of the protocol definition. The protocol definitions will
make reference to those schemas using namespaces.
The protocol is described in terms of messages, states (including the initial state),
transitions and rules, as it is shown in fig. 3. In a rule definition, the agent’s inner state
and transitions are expressed by XML elements (fig. 3). A rule defines the set of
possible transitions for a given state that can be triggered by a certain input message.
Transitions can be guarded by a condition. If the condition is true, the transition is
triggered, otherwise the message remains in the input queue until the condition is
fulfilled.

(state(state_ident), message) -> {(condition, transition)}

It is necessary to remark which internal actions have to be performed in every
transition. In transitions, an agent may execute actions (including the delivery of
output messages) ending with the specification of the next state.

transition -> {action} next_state

Diagram showed in fig.2 can be expressed in XML as we show in fig 3. It also shows
a complete description of a cfp message (the FIPA call for proposal). On protocol

execution, the cfp message contains a product identifier and the value of the current
best price. We assign an identifier to each message to be able to distinguish between
different messages implemented with the same performative.

 <?xml version="1.1" encoding="ISO-8859-1"?>
<action:add-protocol>
 <data:protocol-ident>Vickrey-auction</data:protocol-ident>
 <spec:protocol>
 <spec:messages>
 <spec:message>
 <spec:message-ident>cfp</spec:message-ident>
 <spec:performative>cfp</spec:performative>
 <spec:content>
 <e-market:product>product</e-market:product>
 <e-market:bid>current-best-bid</emarket:bid>
 </spec:content>
 </spec:message> …
 </spec:messages>
 <spec:states> … </spec:states>
 <spec:transitions> … </spec:transitions>
 <spec:rules> … </spec:rules>
</action:add-protocol>

Fig. 3. Messages specification inside a protocol definition

 <spec:states>
 …
 <spec:state-ident>waiting-for-cfp</spec:state-ident>
 …
 </spec:states>
 <spec:transitions>

 <spec:transition-ident>transition2</transition-ident>…
</spec:transitions>

 <spec:rules>
 <spec:rule>
 <spec:state-ident>waiting-for-cfp</spec:state-ident>
 <spec:message-ident>cfp</spec:message-ident>
 <spec:transition-ident>transition2</spec:message-ident>
 </spec:rule>
 …

Fig. 4. State and rule specification.
States are defined with a unique identifier, that is used inside rules. Rules specify
which transition is triggered by a input message being the agent in a certain state.
Following the description of the Vickrey Interaction Protocol (fig. 2), fig. 4 shows the
state and rule definitions. The rule says that being the agent in the waiting-for-cfp
state, the transition labeled as transition2 is triggered by the cfp message.
Defining transitions implies to establish which internal actions have to be performed
by the agent. Actions are described in the next subsection.

2.2 Basic Agent Action Specification

Closely related with the agent model, we specify agent behaviour in terms of
primitive actions, restricted to the application domain. Regardless implementation,
most agents have facts and beliefs, acquired from their experience and from the
environment, stored in a knowledge base or contained in a message. To manage this
information, we consider primitive actions to add and consult data from the
knowledge base or an incoming message. Furthermore, agents perform domain
specific tasks, so an action may refer the execution of an atomic task.

The terms used in actions descriptions are described in an ontology. The ontology
defines terms that have a correspondence with some portion of the agent code. Thus,
this correspondence must be established by the agent developer, saying the name of
the method, task or function that must be called to match a certain term.

 If Received(inform_start_of_auction)
 SetValue(auction_type, vickrey)
 SetValue(bidding_strategy, ascending)
If Received (cfp)
 SetValue(last-best-bid, getContent(cfp,bid))
 SetValue(bid,bid(GetValue(bidding_strategy)))
 Send(propose, setContent(bid))
If Received(inform)
 If getContent(inform, bid)==bid
 SetBelief(bid_accepted, true)

 //I have win!!!

Fig. 5. Internal behavior of an agent participating in a Vickrey auction
The figure 5 shows roughly some specific basic primitive actions and data structures
considered in a e-commerce agent participating in an auction as a seller.The actions,
variables, predicates that this piece of code shows are defined in an ontology,
represented in a XML document.

 <constant>
 <constant-ident>reserve-price</constant-ident>
 <type>integer</type>
</constant>
<var> <var-ident>bid</var-ident><type>integer</type></var>
…
<action>
 <action-ident>bid</action-ident>
 <return><type>integer</type></return>
 <parameter>
 <parameter-ident>strategy</parameter-ident>
 <type>string</type>
 </parameter>
</action> …

Fig. 6. Declaration of constant and variables defined in the e-market ontology.

Fig. 6 shows the partial declaration of variables and actions defined in the e-market
ontology. An ontology encodes meaning, so if an agent commits the e-market
ontology, it means that understands the semantic of the actions, and provides a
matching with its internal functionality. These actions and variable identifiers will be
used in the transitions specified in the protocol definition. Fig.7 shows an example of
how we specify transitions, in the content of a explained protocol definition. It shows
only part of the transition2 transition specification. Inside a transition we specify the
list of actions that have to be executed. If these actions have parameters, we have to
specify a value. Constant, variables, or actions that return a value are valid. Actions
may be general or domain specific. The former ones (e.g. send(),

setState(),getContent(),SetValue(), setBelief()) constitute the basic behaviour of an
agent. Hence, they are available for all applications so they can be used inside any
protocol definition without no effort. The last action performed refers to a state
change.

 <spec:transition>
 <spec:transition-ident>transition2</transition-ident>
 <spec:action>
 <spec:action-ident>SetValue</action-ident>
 <spec:parameter>
 <spec:var-ident>last-best-bid</spec:var-ident>
 </spec:parameter>
 <spec:parameter>
 <spec:var-ident>last-best-bid</spec:var-ident>
 </spec:parameter>
 <spec:parameter>
 <spec:action>
 <spec:action-ident>getContent</action-ident>
 <spec:parameter>
 <spec:message-ident>cfp</spec:message-ident>
 </spec:parameter>
 <spec:parameter>
 <spec:message-ident>bid</spec:message-ident>
 </spec:parameter>
 </spec:action>
 </spec:parameter>
 </spec:action>
 …
 <spec:action>
 <spec:action-ident>SetState</action-ident>
 <spec:parameter>
 <spec:state-ident>waiting-for-cfp</spec:state-ident>
 </spec:parameter>
 </spec:action>
</spec:transition>

SetValue(last-best-bid,
getContent(cfp,bid))

Next State

Fig. 7. Transition specification inside a protocol definition

3 An example

In this section we will show through an “real” example the benefits of our proposal.
Suppose a user called “John”, interested in buying the first edition of Shakespeare’s
famous novel “Othelo”. After searching for it in several bookstores, he decides to try
on the Internet. He has several options. He can search for bookstores and auction
houses, and see (and hope) that any of them have the desired issue. If he is lucky, he
would get it by a simply electronic transaction or after participating in an auction. At
this point, and depending on the auction house, he would have to bid on his own,
which can be a complex task, or launch an agent to bid on behalf of him. Of course,
the auction house provides a buyer agent to participate in the auction. John could tell
the agent the maximum price he is determined to pay, and maybe additional
information, like, if the agent have to ask John, or have to decide on his behalf.
If John trusts in the agent provided by the auction house, and doesn’t mind to pay a
high price, he finally would get the book.

But, all this process takes a lot of time, and John is a very occupied business man.
Surely, he does not has time to spend searching for the book. Why do let somebody
(or something) do it for you? Agents can assist users on these tasks. Simple bidding
robots and auctions search engines have been developed. Typically, they only
automate part of the problem, and the negotiation protocols used are so restrictive.
Thus, it is worthy to develop autonomous agents that can participate in multiple
heterogeneous auctions. The agent will collect and search for the appropriate auction.
Give an agent a complete description, and it would get it for you.
But, it isn’t as nice as it looks. John’s agent, is prepared to buy, to pay, but … the only
place that offers a special edition of the desired book is an auction site where the type
of auction is the Vickrey auction. Oh! When John personalized his agent he thought
“type of auction, well, the most widely used, the English one!”. Is going John to run
out of the wished book?
Well, if John decides to use one of our agents, he can have a last possibility. John’s
agent can be trained to participate in this auction, following Vickrey auction rules.
John’s agent has found the advertise that is going to be auctioned a first edition of
“Othelo”. This agent can negotiate in auctions following the English Auction
Interaction protocol, and it also commits the e-market ontology. It means that it can
buy, pay, bid, and understand the terms defined in the named ontology.
The auction site is an uniform second-price auction, also called Vickrey auction. In
this auction type the bids are sealed and the product is awarded to the highest bid at a
price equal to the second highest bid. In a sealed bid auction, the auctioneer sorts the
bids in relative value. After the auction time ends, the participants are informed about
the winner bid. Then, the winner participant is requested to pay.
John’s agent try to join the auction, but notices that it does not understand that
protocol. The auctioneer then trains the agent with the protocol and auction rules as
we explained in the above sections. For example, during protocol training, the trainer
agent inform the trainee that the bidding strategy is ascending.
This is feasible because, the actions and functionality of John’s agent are the same for
both auction types. Only some actions parameters change (auction_type or
bidding_strategy) (see fig. 5). Similarities and dissimilarities of both auction
protocols, and the Vickrey protocol can be expressed in terms of the functionality
already used in the English protocol.
The trainer agent will give John’s agent the state-transition diagram that describes the
protocol, showed in fig. 1, expressed in the XML content language described in
previous sections. John’s agent will adapt quickly to the new protocol, without no
need to change its internal functionality. It is important to remark that is John’s agent,
the same that John created and tailored with his preferences (product, maximum price,
…). Instead of replacing the agent with a more complex agent, able to understand
every possible auction, we adapt the agent for every auction at runtime.

4 Related work

Most of the existing agents systems, the agent’s interaction is fixed at the time the
agent is created. To extend, update or simply change the set of interaction protocols
an agent understands it must be replaced. Exists some approaches that propose to give
software agents the capability to totally or partially adapt its behavior during runtime.
HP Labs[8] approach provides an infrastructure that support a dynamic behavior for
modification of agents. A dynamic agent don’t have a fixed set of predefined
functions, but instead, they carry application-specific actions, which can be loaded
and modified on the fly. In this approach they modify the functionality of agents, not
the interaction protocols. Another approach, called Virtual Private Community[9]
from Fujitsu Labs, proposes a new framework for changing protocols. This
framework enables agents to exchange and install protocols dynamically by accepting
policy packages that define protocols. These approaches seem to be similar to our
approach, but we consider actions, which can be considered fine-grained
functionality, instead of tasks. In these approaches agents are code-carriers. They
simply load the code and execute it for every transition, which is not so efficient.
However, we are conscious about agent internal functionality, because we don’t
propose to load external code, instead, our agents execute internal actions.
As well, a INRIA project[10] has studied and implemented a protocol for dynamic
reconfiguration of agent-based applications. But they only consider changes in the
structure of the application at run-time, but it doesn’t consider agent internal changes.
In e-markets domain, current proposals[11][12][13] worry about providing agents the
ability of taking part in simultaneous markets. They do not consider interoperability
and communication issues. They focus on the issue of appropriate negotiation
strategies and algorithms for negotiation in multiple auctions. Finally, [14] presents a
formal framework where the agent can select and apply dynamically different
mechanism to coordinate its interactions, that is, agents control how they coordinate
among a fixed set of protocols On the other hand, some studies provide optimal
bidding algorithms for agents participating in multiple simultaneous auctions. These
approaches complements our solution, improving bidding strategy for a larger amount
of auction types.

5 Conclusion and future work

In this paper we outline a simple mechanisms for runtime protocol training for FIPA-
compliant agents. This mechanism increases agent interoperability regarding protocol
interactions inside an application domain. We have presented the benefits for the e-
market domain, where the agent is not restricted to negotiate through a fixed set of
negotiation protocols.
This mechanism is part of a new agent-component model that is being design[15].
This agent-component model allows the dynamic training of non supported
interaction protocols. This useful capability is provided by our compositional agent
model. In our model, the composition rules of agent internal components, that manage
agent behavior, can be changed easily, even at runtime. A Component-based design

improves the dynamic internal modification of agents. We are developing a working
prototype over FIPA-OS platform.
In the previous section, we have pointed out some advantages over existing
approaches that consider behaviour replacement. Though in this paper we consider to
add new interaction protocol over a fixed functionality, provided by the agent
application domain, the approach we are developing takes into account more aspects,
included agent functionality.

6 References

[1] K.Reynolds “Going…Going…Gone!A survey of Auction types”,
 http://www.agorics.com/Library/auctions.html Agorics, Inc. August 2001
[2] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,

5(2):199-220, 1993
[3] FIPA Contract Net Interaction Protocol Specification. Foundation for Intelligent Physical

Agents, 2000. http://www.fipa.org/specs/fipa00029/
[4] FIPA Iterated Contract Net Interaction Protocol Specification. Foundation for Intelligent

Physical Agents, 2000. http://www.fipa.org/specs/fipa00030/
[5] FIPA English Auction Interaction Protocol Specification. Foundation for Intelligent Physical

Agents, 2000. http://www.fipa.org/specs/fipa00031/
[6] FIPA Dutch Auction Interaction Protocol Specification. Foundation for Intelligent Physical

Agents, 2000. http://www.fipa.org/specs/fipa00032/
[7] FIPA Request Interaction Protocol Specification. Foundation for Intelligent Physical

Agents, 2000. http://www.fipa.org/specs/fipa00026/
[8] Q. Chen et al. “Dynamic agents”, Proceedings of Conference on Cooperative Information

Systems Systems.1998
[9] T. Iwao et al. “A Framework for the Exchange and Installation of Protocols in Multi-Agent

System”, CIA 2001, LNAI 2182, p. 211–222. 2001
[10] M. Aguilar et al. “Specification and Verification of a Dynamic Reconfiguration Protocol

for Agent-Based Applications”, Proceedings of DAIS’2001, Kracow (Poland), September
2001.

[11] P.Anthony, W.Hall, V.D.Dang and N.R.Jennings ”Autonomous agents for participating
in multiple online auctions”. Proc. of the IJCAI Workshop on E-business and Intelligent
Web 2001, pp 54-64, 2001.

[12] C. Preist “Algorithm Design for Agents which Participate in Multiple Simultaneous
Auctions”, Technical report HPL-2000-88. 2000.

[13] A. Byde. ”Dynamic Programming Model for Algorithm Design in simultaneous
Auctions”, Second International Workshop on Electronic Commerce, WELCOM 2001,
LNCS 2232, p. 152, 2001.

[14] R. A. Bourne, K. Shoop and N. R. Jennings “Dynamic Evaluation of Coordination
Mechanisms for Autonomous Agents”, 10th Portuguese Conference on Artificial
Intelligence LNAI 2258, pp. 155–168. 2001.

[15] M.Amor, L. Fuentes, M.Pinto, J.M. Troya. “Combining software components and mobile
agents”. Proc. of ESAW’00. LNAI 1972. 2000.

