
Tableaux for dynamic hierarchies of preorders

Pedro J. Mart��n

Dep. de Sistemas Inform�aticos y Programaci�on. Universidad Complutense de Madrid

E-mail: pjmartin@sip.ucm.es

Abstract. We present a logic for reasoning with preorders and dynamic

hierarchies, where operations behave monotonically in all of their argu-

ments. We describe and analyze two sound and complete inference sys-

tems based on semantic tableaux.

1 Introduction

The study of eÆcient methods for dealing with equality has been traditionally

considered an important workline in di�erent areas of theoretical computer sci-

ence. Nevertheless it has recently emerged the need of extending this study to

transitive relations di�erent from those of equivalence, and of equality, in par-

ticular. This has been the case, for instance, in CLP [9] where constraint solvers

are incorporated to logic programming. In the �eld of automated deduction, this

situation has resulted in the development of provers with additional speci�c rules

expressing the properties of the relation that has been studied. This line was fol-

lowed for example in [2, 8, 1, 10], the two latter using resolution as refutational

proof method.

On the other hand, sorts are commonly argued as a great applied bene�t to

approach programming closer to real world. Speci�cally, ordered sorts are con-

sidered useful for incorporating in a natural and elegant way, partial functions,

multiple representation and constructors/selectors in structured data [7]. In au-

tomated deduction, the use of sorts entails as well a signi�cant reduction of the

search space.

When reasoning in a hierarchy of sorts, it is usual to maintain the sort infor-

mation apart from data; in this sense we say that information is statically de-

clared. However in some situations we need to reason under assumptions about

sort relations, using what is known as dynamic sort information [13].

In this paper, a logic specially well suited for reasoning with preorders (reex-

ive and transitive relations) and dynamic hierarchies (sort relations) is de�ned.

Operations for this logic (including predicates as boolean functions) are assumed

to behave monotonically in their arguments. For this logic we present two sound

and complete tableau{based deduction systems, exposed as ground and free-

variable versions. Reasoning methods based on tableaux have gained attention

in the past decade due mainly to theoretical and implementational progress

which have permitted to build tableau{based theorem provers that can compete

with those resolution{based ones. Indeed, tableaux methods can be extended to

many non classical logics used in AI research, they easily allow the introduc-

tion of heuristics and human interaction, and they do not require conversion to

canonical forms.

1

2 The logical system LPDS

In this section we present the logical system LPDS which stands for Logic with

P reorders andDynamic Sorts. Basically LPDS is an extended order-sorted pred-

icate logic with the following particularities. First, data range over preordered

domains and so, they can be related by using inequalities; second, sorts are

dynamically ordered since the subsort information is incorporated within the

language; and third, the operations are assumed to behave monotonically in

each of their arguments.

Let us �x some concepts, a preorder is a pair hD;vDi, whereD is a nonempty

set and vD is a reexive and transitive binary relation onD. Note that, in partic-

ular, partial orders are antisymmetric preorders, and equivalence relations (e.g.

equality) are symmetric preorders. Given (Di;vDi
), 1 � i � n, and (D;vD)

preorders, a mapping f : D1� : : :�Dn ! D is monotonic in the i-th argument,

if f(d1; : : : ; di; : : : ; dn) vD f(d1; : : : ; d
0

i; : : : ; dn) for every di; d
0

i 2 Di such that

di vDi
d0i. The notion of monotonicity can be extended to predicates by consid-

ering that the set of boolean values ft; fg is ordered by f v t.

A signature � for LPDS consists of a �nite set S of sorts s, and sorted sets

of constants Cs, function Fs1;::: ;sl!s and predicate symbols Ps1;::: ;sr . Given a

signature � and a sorted family of variables (Xs)s2S , the sets of terms T (�)

and formulas F (�) are respectively de�ned as follows:

t ::= xs(2 Xs) j cs (2 Cs) j f(t1; : : : ; tn) (f 2 F
s1;::: ;sn!s; ti 2 T (�))

' ::= t v t0 j s v@ s0 j P (t1; : : : ; tn) (P 2 Ps1;::: ;sn ; ti 2 T (�)) j :' j '^'0 j 9xs'

The formulas 8xs', ' _ and ' ! will stand for their classical abbre-

viations. In LPDS, literals are atoms t v t0; s v@ s0; P (t1; : : : ; tn) and their

negations. Ground terms and sentences are �-expressions where no variable oc-

curs free. Positions, subterms and replacements in terms are de�ned as usual,

that is tjp denotes the subterm of t at position p, and t[s]p is the result of

substituting s for tjp in t.

Note that we are allowing the construction of terms and predicates which

are not well-sorted w.r.t. the signature. The reason for this apparent misuse

is to allow LPDS to express properties about data, that are conditioned to

assumptions about sorts. For example, the formula s v@ s0 ! 8xs9xs
0

(xs v xs
0

)

will be interpreted as true since the consequent of the implication can be derived

from the truth of the antecedent. When we make reasonings, the combination

of the subsort information provided by the formulas and the sort information

given in the signature drastically reduces the search space.

Given a set � of subsort relations of the form s v@ s0, what we call a

(dynamic) hierarchy, we can de�ne whether a term t is well-sorted w.r.t. � or

not. For example, if f 2 F s1!s2 ; a 2 Cs is given in the signature, then f(a) is a

well-sorted term w.r.t. fs v@ s0; s0 v@ s1g.

De�nition 1. Given a hierarchy �, the sorted family of �-terms that are well-

sorted w.r.t. �, written (T �
� (s))s2S , is the least sorted family of sets (Y s)s2S of

�-terms such that:

2

1. Cs � Y s 2. Xs � Y s 3. If s0 v@ s 2 � then Y s0 � Y s

4. If f 2 Fs1;::: ;sn!s and ti 2 Y
si , 1 � i � n, then f(t1; : : : ; tn) 2 Y

s

If t 2 T �
� (s) then we will say that t has dynamic sort s, because the sort of

t depends on the subsort information of �. On the contrary, we use sort(t) for

representing the sort of a term t that is deduced from the (static) sort informa-

tion contained in the signature. It is de�ned by sort(cs) = sort(xs) = s, and

sort(f(t1; : : : ; tn)) = s, if f 2 Fs1;::: ;sn!s. If sort(t) = s, we will say that t has

static sort s. In the example above, a has static sort s and dynamic sorts s; s0

and s1 w.r.t. fs v@ s0; s0 v@ s1g.
Given a hierarchy �, we say that the sort s is a subsort of s0 w.r.t. �, written

s �� s0, if either s0 = s or there exists a sequence of formulas in � of the

form s v@ s1; s1 v@ s2; : : : ; sk v@ s0: The relation �� is decidable for �nite

hierarchies � and can be computed in O(size(S)
3
). Dynamic and static sorts are

related as follows.

Lemma 1. 1. t 2 T �
� (s) () (sort(t) �� s and t 2 T �

� (sort(t))).

2. If f 2 F s1;::: ;sn!s and t = f(t1; : : : ; tn) 2 T
�
� (s) then ti 2 T

�
� (si); 1 � i � n.

This result has an important consequence from a practical point of view:

the problem \t 2 T �
� (s)?" is decidable, assuming the �niteness of �. In fact

such a problem can be solved in polynomial time w.r.t. the sizes of t and S.

For example, if f 2 F s1!s2 , then we can prove that f(t0) 2 T �
� (s), by checking

whether s2 �
� s {which is decidable for a �nite �{ and proving that t0 2 T �

� (s1).

The notion of well-sortedness can be naturally extended from terms to formulas.

De�nition 2. The well-sortedness of a formula ' w.r.t. a hierarchy �, written

WS(';�), is de�ned as follows:

1. WS(s v@ s0; �), s v@ s0 2 �
2. WS(t1 v t2; �), there exists s 2 S such that ti 2 T

�
� (s), i = 1; 2

3. WS(P (t1; : : : ; tn); �), ti 2 T
�
� (si), 1 � i � n, P 2 Ps1:::sn

4. WS(:';�),WS(';�)

5. WS('1 ^ '2; �),WS('i; �); i = 1; 2

6. WS(9xs';�),WS(';�)

Given a set of formulas 	 , WS(; �) holds if WS(';�), for every ' 2 	 .

Again Lemma 1 implies that the problem \WS(';�)?" is also decidable

whenever � is �nite (and polynomial w.r.t. the sizes of ' and S).

As in �rst-order logic, substitutions in LPDS are mappings � from variables

to terms such that the domain of � de�ned by dom(�) = fxs 2 X=�(xs) 6=
xsg, is �nite. A substitution with domain fx1; : : : ; xkg will be represented by

[�(x1)=x1; : : : ; �(xk)=xk]. In order to preserve the soundness of the tableau sys-

tems we present, we must require that the static sort s of the substituted variable

xs is a dynamic sort of the substituted term �(xs).

De�nition 3. A substitution � is well-sorted w.r.t. a hierarchy �, writtenWS(�;

�), if �(xs) 2 T �
� (s).

3

Among the main properties of well-sorted substitutions, it can be proved that

they preserve the dynamic sorts of terms and the well-sortedness of formulas.

Lemma 2. Given a term t, a formula ', a hierarchy �, and a substitution �

such that WS(�; �), the following properties hold:

1. If t 2 T �
� (s), then t� 2 T �

� (s) 2. If WS(';�), then WS('�; �)

The reciprocal results also hold whenever the substitution preserves static

sorts. Formally, a substitution � preserves static sorts if sort(�(xs)) = s.

Lemma 3. Given terms t; t0, a formula ', a hierarchy �, and a substitution �

which preserves static sorts, the following properties hold:

1. If t� 2 T �
� (s), then t 2 T �

� (s) 2. If WS('�; �), then WS(';�)

3. If t� = t0� , WS(�; �) and � = mgu(t; t0)1, then WS(�; �).

3 Semantics of LPDS

In order to interpret terms, �-structures in LPDS must supply preordered do-

mains for each sort, and a special new element ? for representing the value of

non well-sorted terms.

De�nition 4. A �-structure D is composed of a system f(Ds;vDs)js 2 Sg[f?g
and interpretations for constants fcD 2 Dsjc 2 Csg, function ffD : Ds1 � : : :�
Dsl ! Dsjf 2 Fs1;::: ;sl!sg and predicate symbols fPD : Ds1 � : : : � Dsr !
ff; tgjP 2 Ps1;::: ;srg such that:

1. (Ds;vDs)s2S is a sorted family of preorders which is transitive, that is: (y)
if d vDs d0, d0 vDs0 d

00, and d; d00 2 Ds00 , then d vDs00 d
00.

2. fD and PD are monotonic in each of their arguments.

A valuation � for D is a sorted family of mappings �s : Xs ! Ds. A �-

interpretation is hD; �i where D is a �-structure and � is a valuation for D.

We make two observations. First, the valuation of variables only range over

non-? values. Second, we require transitivity (y) in the family of preorders in

order to ensure the soundness of some tableau rules (cfr. � later on); this avoids

some pathological structures, allowing to prove, for example, that for every sorts

s; s0; if d; d0 2 Ds \Ds0 and d vDs d0, then d vDs0 d
0.

De�nition 5. Let hD; �i be a �-interpretation. The semantic value of a �-

term t, with sort(t) = s, in hD; �i is an element [[t]]D� 2 Ds [f?g de�ned by: (1)

[[cs]]D� = cD; (2) [[xs]]D� = �(x), and (3) for every f 2 Fs1;::: ;sn!s:

[[f(t1; : : : ; tn)]]
D

� =

�
fD([[t1]]

D

� ; : : : ; [[tn]]
D

�) if [[ti]]
D

� 2 Dsi ; 1 � i � n

? otherwise.

The value of a �-formula ' in hD; �i, written [[']]D� (2 ff; tg), is de�ned by:

{ [[s v@ s0]]D� =

�
t if Ds � Ds0

f otherwise
1
mgu(t; t0) is the most general uni�er of t and t

0.

4

{ [[t1 v t2]]
D

� =

�
t if there is s such that ([[ti]]

D

� 2 Ds; i = 1; 2; and [[t1]]
D

� vDs [[t2]]
D

�)

f otherwise

{ [[P (t1; : : : ; tn)]]
D

� =

�
PD([[t1]]

D

� ; : : : ; [[tn]]
D

�) if [[ti]]
D

� 2 Dsi ; 1 � i � n

f otherwise

for every P 2 Ps1;::: ;sn :

{ The boolean value for :;^ and 9 is de�ned as in �rst-order logic.

The concepts of model, satis�ability and logical consequence can be de�ned

as in �rst-order logic. Finally, the following lemma presents a collection of results

that will be important when proving the properties of the tableau systems of

the next sections.

Lemma 4. 1. Given a hierarchy � and a term t, if hD; �i j= � and t 2 T �
� (s),

then [[t]]D� 2 Ds.

2. Given a hierarchy � and a substitution � = [t1=x1; : : : ; tn=xn], if hD; �i j= �

and WS(�; �), then the following holds: (1) [[t�]]D� = [[t]]�0 ; and (2) [['�]]D� =

[[']]�0 , where �
0 = �[[[t1]]

D

� =x1; : : : ; [[tn]]
D

� =xn].

3. If hD; �i j= t1 v t2 and exists s such that [[t[ti]p]]
D

� 2 Ds, i = 1; 2, then

[[t[t1]p]]
D

� vDs [[t[t2]p]]
D

� .

4. If hD; �i j= t1 v t2, [[ti[t
j]p]]

D

� 2 Dsi , j = 1; 2, and [[P (t1; : : : ; ti[t
1]p; : : : ; tn)]]

D

� ,

then [[P (t1; : : : ; ti[t
2]p; : : : ; tn)]]

D

� .

4 Ground tableaux

In order to deal with the preorder relation and the sort information, we propose

inference systems that extend classical tableau methods. As usual, a tableau for

a �nite set of LPDS-sentences � is a formula-labeled tree which, begining with

a single branch with a node for every ' 2 �, grows up by the application of

rules to the formulas of its branches. The ground tableau method we present

includes the classical � and � rules [5], respectively used to extend (� applied

to ' ^ or ::') or split (� applied to :(' ^)) a branch, and incorporate

the rules of Table 1 for preorders and sorts. Speci�cally, we introduce the rules

Ref and � for the preorder relation and the monotonic behavior of function

sysmbols, and � for the monotonicity of predicate sysmbols. For sorts, we adapt

the usual rules and Æ involved in the expansion of quanti�ed formulas. In Æ, we

suppose that the signature is extended to contain collections of in�nite sets ACs

and SF s1;::: ;sl!s, s1; : : : ; sl; s 2 S, of auxiliary constants and Skolem function

symbols, respectively. Note that, for simplicity, we use the branch B instead of

the hierarchy included in B.

Observe that only \well-sorted" information is added to a tableau when the

rules of Table 1 are applied. This trivially holds for the rules Ref , � and � since

such a condition is explicitely required. It is also true for the rules and Æ

because the introduced terms are well-sorted w.r.t. the related branch.

A common characteristic of tableau systems is that they are refutational

methods; that is, they study whether a set of sentences � is satis�able or not.

5

() If :9xs' 2 B, then B is enlarged with a new node labeled by :'[t=xs], where

t is a ground term such that t 2 T B

� (s)

(Æ) If 9xs' 2 B, then B is enlarged with a new node labeled by '[t=xs], where t is

a ground term such that t 2 T B

� (s) and its root symbol is new to B

(Ref) B is enlarged with the new node labeled by t v t, where t is a ground term

such that WS(t v t; B)

(�) If t v t
0, t1 v t2[t]p 2 B, then B is enlarged with a new node labeled by

t1 v t2[t
0]p, whenever WS(t1 v t2[t

0]p; B)

(�) If P (t1; : : : ; ti[t]p; : : : ; tn), t v t
0
2 B, then B is enlarged with a new node

labeled by P (t1; : : : ; ti[t
0]p; : : : ; tn), whenever WS(P (t1; : : : ; ti[t

0]p; : : : ; tn); B)

Table 1. Rules of G

The branches of a tableau for � represent all the available cases corresponding

to the hypothesis \� is satis�able". Therefore � is not satis�able if none of these

branches is satis�able. To syntactically prove such a condition, we introduce a

usual closure rule: a branch B is closed, and then it is not extended and not

splitted anymore, if two literals of the form ' and :' occur in B. We also say

that a branch is open if it is not closed, and that a tableau is closed whenever

all of its branches are closed.

Let G (for Ground) be the tableau system composed of the rules �; �, closure,

and the rules of Table 1. We say that it is ground because the application of the

rule replaces the universally quanti�ed variable xs by a ground term with the

same dynamic sort w.r.t. the related branch.

The main properties of G are its soundness and its completeness. It is sound

because a set of sentences � is not satis�able whenever a closed G-tableau can

be built for �. As for the case of �rst-order logic, this property is based on the

fact that the satis�ability of a tableau T , that is the existence of a satis�able

branch, remains when an expansion rule is applied to T .

Theorem 1 (Soundness of G). Let � be a �nite set of �-sentences. If there

exists a closed G-tableau for �, then � is not satis�able.

The opposite direction in the previous theorem corresponds to the complete-

ness of the system, but for LPDS we need an additional hypothesis. If there is

no closed G-tableau for the set �, it is obvious that we can systematically build

a tableau for � which expands all of its open branches at length. Then, it can be

proved that if some branch B is still open, B has enough information to de�ne a

model of f' 2 B=WS(';B)g. In order to ensure that the initial set of sentences

� is well-sorted w.r.t. any of these branches, � is required to be well-sorted w.r.t.

the hierarchy statically obtained from itself.

De�nition 6. The static hierarchy of a sentence ', written P('), is recursively
de�ned by: (1) P(s v@ s0) = fs v@ s0g, (2) P(') = ;, for another literal

', (3) P(' ^) = P(') [P(), (4) P(:(' ^)) = ;, (5) P(9x') = P('),
(6) P(:9x') = P(:') and (7) P(::') = P('). For a set of sentences �,

P(�) =
S
'2� P(').

6

Theorem 2 (Completeness of G). If � is a �nite set of �-sentences not

satis�able and WS(�;P(�)), then a closed G-tableau for � can be built.

Soundness and completeness hold even when extra conditions are required in

rule Æ. For example, it is frequent to replace the existentially quanti�ed variable

xs by a new constant cs 2 ACs. However, in order to allow the tableau system

we present in the next section to simulate G, it is more convenient to introduce

the ground term f(t1; : : : ; tn), where f 2 SF s1;:::;sn!s is new to the branch

B, t1; : : : ; tn are the terms previously introduced to B by a -application and

si = sort(ti), 1 � i � n.

5 Free-variable tableaux

Analyzing the system G one �nds that one of its main drawbacks comes up when

guessing the ground term introduced in the application of the rule . It is better

to use a free-variable to represent a unique but unknown datum. The speci�c

value of this variable will be decided in the uni�cation process involved when

closing a branch or when applying the rules related to the preorder relation.

Observe that its instantiation must be coherent with the sort information, that

is, a free-variable xs has to be substituted by a term t 2 T B
� (s), for every branch

B where xs occurs. Only substitutions satisfying such a requirement are allowed

for LPDS in order to preserve soundness.

De�nition 7. A substitution � is well-sorted w.r.t. a tableau T , written WS(�;

T), if WS(�jvar(B); B), for every branch B of T .

Let FV (for Free-Variable) be the tableau system composed of the rules �; �

and the rules of Table 2. In order to close a tableau, we compute a most general

uni�er and test if it is well-sorted w.r.t. the whole tableau. Hence FV also in-

cludes the following closure rule: a tableau T , composed of branches B1; : : : ; Bk,

is closed if there exists a set of equations of atomic formulas M = f'1 '
 1; : : : ; 'k ' kg such that M is uni�able, WS(mgu(M); T) and 'i;: i 2
Bi; 1 � i � k.

Observe that, given a substitution � and a tableau T , the problem \WS(�; T)?"
is decidable because the question \t 2 T B

� (s)?" can be solved in polynomial time

for every branch B of T . Hence the requirements needed for the application of

the closure rule once M is chosen, that is, the computation of mgu(M) and its

well-sortedness test, can be solved polynomially.

The system FV is sound and complete. For the case of soundness, Theorem 1

can be adapted since the existence of a model for a FV-tableau is again preserved
when it is extended. However the notion of satis�ability for tableaux must be

rede�ned to deal with free-variables. Briey, we use the notion of ground satis�a-

bility: there exists a �-structure which models T � for every ground substitution

� such that var(T) � dom(�) and WS(�; T).

Theorem 3 (Soundness of FV). If a �nite set of �-sentences � has a closed

FV-tableau, then � is not satis�able.

7

(0) If :9xs' 2 B and s
0
�

B
s, then B is enlarged with a new node labeled with

:'[ys
0

=x
s], where ys

0

is a new free-variable to the tableau

(Æ0) If 9x
s
' 2 B, then B is enlarged with a new node labeled with

'[f(x
s1
1
; : : : ; x

sn
n)=xs], where f 2 SF

s1;::: ;sn!s is new to B and x
s1
1
; : : : ; x

sn
n

are the free-variables of B

(�0) If t v t
0, t1 v t2[t

00]p 2 B, � = mgu(t; t00) and WS(�; T), then � is applied to

T and B� is enlarged with a new node labeled with (t1 v t2[t
0]p)�, whenever

WS((t1 v t2[t
0]p)�; B)

(�0) If t v t
0, P (t1; : : : ; ti[t

00]p; : : : ; tn) 2 B, � = mgu(t; t00) and WS(�; T),

then � is applied to T and B� is enlarged with a new node labeled with

P (t1; : : : ; ti[t
0]p; : : : ; tn)�, whenever WS(P (t1; : : : ; ti[t

0]p; : : : ; tn)�;B)

(Refv) B is enlarged with a new node labeled with x
s
v x

s, where xs is new to T

(Re�) B is enlarged with a new node labeled with f(x
s1
1
; : : : ; x

sn
n) v

f(x
s1
1
; : : : ; x

sn
n), where f is a function symbol, x

s1
1
; : : : ; x

sn
n are new free-

variables to T and WS(f(x
s1
1
; : : : ; x

sn
n) v f(x

s1
1
; : : : ; x

sn
n); B)

Table 2. Rules of FV

FV completeness can be proved by lifting a closed G-tableau, which is pro-

vided by Theorem 2. Before presenting the corresponding theorem, we prove

that the application of the G-rules Ref, � and � can be simulated one by one

within the system FV .

Lemma 5 (Lifting). Let T and � be a FV-tableau and a ground substitution

such that var(T) � dom(�), WS(�; T) and � preserves static sorts. If T � can

be closed using the rules Ref, � and �, then T can be closed using Refv, Re�, � 0

and �0.

Theorem 4 (Completeness of FV). If � is a �nite set of �-sentences not

satis�able and WS(�;P(�)), then a closed FV-tableau for � can be built.

Proof. By Theorem 2 there exists a closed G-tableau Tg for � where any Æ-

expansion introduces a functional term as explained at the end of Section 4. We

transform Tg into a new closed G-tableau T 0g , by moving the applications of the

rules Ref, � and � to the end of every branch where they occur. Note that this

can be done because (a) only literals are involved in these rules, hence we can

move up the application of the rules �; �; ; Æ; (b) we can apply repeatedly the

rules Ref, � and � when rising a �-expansion in order to force them to occur in

every branch produced by the disjunction.

Let T be the FV-tableau which simulates each -application to T 0g that

introduces the ground term t 2 T B
� (s), by applying 0 to T to introduce the

free-variable xsort(t). Let � be the substitution that groundly instances these

free-variables with the corresponding ground term of T 0g , that is, �(xs) = t.

Hence � relates both tableaux because T � = T 0g . Moreover,WS(�; T) holds and
� preserves static sorts. Thus, Lemma 5 can be used to conclude that T can be

closed.

8

6: ds � ds 6v ds

7: ds � 1 ' ds

8: ds � 1 v ds

9: ds v ds � 1

10: ds v 1 _ (P (ds) ^ 1 v ds)

11: ds v 1 12: P (ds)

13: 1 v ds

14: ds � ds v ds � ds

15: ds � ds v ds � 1

16: ds � ds v ds

17: ds v ds � ds

18: P (ds � ds)

19: :P (ds � ds)

� to 7

�; � to 10

Æ to 5

 to 2

 to 3

Ref

� to 14,11

� to 15,8

� to 9,13

� to 12,17

 to 4

6: ds � ds 6v ds

7: ys � 1 ' ys

8: ys � 1 v ys

9: ys v ys � 1

10: zs v 1 _ (P (zs) ^ 1 v zs)

11: zs v 1 12: P (zs)

13: 1 v zs

14: vs � vs v vs � vs

15: zs � zs v zs � 1

16: ys � ys v ys

17: ys v ys � ys

18: P (ys � ys)

19: :P (us � us)

Æ0 to 5

0 to 2,1

� to 7

0 to 3

�; � to 10

Re�

�0 to 14,11

�0 to 15,8

�0 to 9,13

�0 to 12,17

0 to 4

Fig. 1. The G-tableau Tg (left) and the FV-tableau T (right)

Example 1. Given two sorts s and R+ , let 1R
+

; �R
+;R+

!R
+

and PR
+

be a constant,

a function and a predicate symbol, respectively. Then = 8xs(xs � xs v xs)

follows from the set of hypothesis � = f1 : s v@ R
+ ; 2 : 8xR

+

(xR
+

� 1 ' xR
+

); 3 :

8xs(xs v 1_ (P (xs)^1 v xs)); 4 : 8xs:P (xs �xs)g. Note that we use the symbol

� in in�x form and 2 ' } as shorthand for 2 v }^} v 2.

In Figure 1 on the left, we show the simpli�ed G-tableau Tg for �[f5 : : g,
which is closed by 6, 16, 18 and 19. On the right, the closed FV-tableau T
simulates Tg (cfr. proof of Theorem 4). Note that T changes when the rule � 0 is

applied to obtain 15 and 16, since the substitutions [zs=vs] and [ys=zs], which are

well-sorted, are respectively applied to the whole tableau. For example, formulas

12 and 13 respectively turn into P (ys) and 1 v ys before introducing 17. Finally,

T is closed because the substitution � = mgu(f16 : ys � ys v ys ' 6 : ds � ds v
ds; 18 : P (ys; ys) ' 19 : P (us; us)g) = [ds=ys; ds=us] satis�es WS(�; T).

6 Analysis and related works

Let us analyze the system FV from a practical point of view. One of its main

advantages arises when dealing with sort information, since FV only requires

standard uni�cation and a test to ensure well-sortedness. Thus, the cost of using

dynamic hierarchies is polynomial and so its introduction does not increase the

complexity of classical free-variable tableaux for �rst-order logic. Respecting

sorts, the unique drawback of the system comes from the application of the rule

0, since the universally quanti�ed variable xs can be replaced by a new free-

variable of any subsort of s. Other approaches integrate sorts into �rst-order logic

in a more expressive way [13, 12], but at a high cost: their free-variable tableaux

use speci�c procedures of (rigid and sorted) uni�cation which are terminating,

although they do not ensure polynomial complexity.

9

The main potential ineÆciency of the system FV results from the application

of the monotonicity and preorder rules (� 0; �0;Refv ;Re�). Obviously, heuristics

are essential to control their application. Among these rules, Refv and Re� are

critical since they are axioms, that is, their application does not need any in-

formation of the branch. It has been proved that such axioms can be avoided

for equality [3, 4], but for monotonic preorders they are necessary (for exam-

ple, to prove that the set fa v b;8xs8ysf(g(b); xs; xs) 6v f(ys; ys; g(a))g is not

satis�able, where a; b 2 Cs). [11] describes a procedure of (rigid monotonic and

preordered) uni�cation which avoids these axioms, but it is non terminating.

[6] presents a preliminary three{valued version of the logic LPDS, which in-

cludes the semantic value u to interpret non well-sorted formulas. This approach

introduces some changes in the tableau rules. For example, the premises of the

rules � 0 and �0 (t v t0, t1 v t2[t
00]p and P (t1; : : : ; ti[t

00]p; : : : ; tn), respectively)

are required to be well-sorted, instead of their conclusions. Closing a branch,

[6] asks for a pair of well-sorted literals, otherwise they could be interpreted to

u and no semantic contradiction would hold. Another di�erence corresponds to

the computation of the family (T �
� (s))s2S , because the closure of the subsort

relation �� is explicitly obtained in [6] by means of two rules: Ref@, used to

add s v@ s to any branch, and Tran@ used to introduce s1 v@ s3 in a branch

B, whenever s1 v@ s2; s2 v@ s3 2 B.

Proofs of the present paper are available at http://babel.dacya.ucm.es/chus/tr02.ps.gz

References

1. L. Bachmair, H. Ganzinger. Rewrite techniques for transitive relations. Procs.

LICS'94, 384{393, 1994.
2. W. W. Bledsoe, K. Kunen, R. Shostak. Completeness Results for Inequality

Provers. Arti�cial Intelligence 27, 255-288, 1985.
3. D. Brand. Proving Theorems with the Modi�cation Method. SIAM J. Computation

4(4), 412{430, 1975.
4. A. Degtyarev, A. Voronkov. What you always wanted to know about rigid E-

uni�cation. Journal of Automated Reasoning 20(1), 47{80, 1998.
5. M. Fitting. First-Order Logic and Automated Theorem Proving . Springer, 1996.
6. A. Gavilanes, J. Leach, P. J. Mart��n, S. Nieva. Reasoning with preorders and

dynamic sorts using free variable tableaux. AISMC-3. LNCS 1138, 365{379, 1996.
7. J. A. Goguen, J. Meseguer. Order-sorted algebra I. Theoretical Computer Science

105, 217{273, 1992.
8. L. M. Hines. The Central Variable Strategy of Str+ve. CADE'11, LNAI 607,

35-49, Springer Verlag, 1992.
9. J. Ja�ar, M. J. Maher. Constraint logic programming: A survey. Journal of Logic

Programming 19/20, 503{582, 1994.
10. J. Levy, J. Agust��. Bi-rewrite systems. J. of Symb. Computation 22, 279{314, 1996.
11. P.J. Mart��n, A. Gavilanes. Monotonic preorders for free variable tableaux. Procs.

TABLEAUX'2000, LNAI 1847, 309{323, 2000.
12. P. J. Mart��n, A. Gavilanes, J. Leach. Tableau Methods for a Logic with Term

Declarations. J. of Symbolic Computation 29, 343{372, 2000.
13. C. Weidenbach. First-order tableaux with sorts. J. of the Interest Group in Pure

and Applied Logics 3(6), 887{907, 1995.

10

