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Abstract. In this work we present a parallel algorithm inspired on the
evolutionary methodologies, for high precision computation of system
identification algorithms. The parallel algorithm will be used on the
environment of control process engineering because it is very useful when the
mathematical modelation of dynamic complex systems is neccessary. Because
of the good results found with the algorithm simulation, we are working now to
synthetize it as a coprocessor using reconfigurable hardware.

1. Introduction

1.1. System Identification

In many engineering fields it is necessary to dispose of mathematical models for
studying the behaviour of systems whose mathematical description “a priori” is not
possible. In these systems only the input and output (I/O) values are known and its
physical structure is not very known. This drives to the necessity of planning System
Identification (SI) techniques [1]. The SI is born of the experimental method and it
tries to find a system parametric mathematical model. Only the system behaviour for
a set of given stimuli is known. We consider “single input single output” (SISO)
sampled systems with period T and parametric polinomial ARMAX modelation [2].

A(q) y(k) = B(q) u(k-nk) + C(q) e(k) (1)

being
� A(q) = 1 + a1q-1 + ... + anaq-na , the ai represent the output parameters (size na)
� B(q) = b1 + b2q-1 + ... + bnbq-nb+1, the bi represent the input parameters (size nb)
� C(q) = 1 + c1q-1 + ... + cncq-nc, the ci represent the noise parameters (size nc)
� nk, output-input delay; q, delay unit (q-p delays x(k) to x(k-p)); na ≥ nb and na ≥ nc

Basically the identification consists in determining the ARMAX model parameters
(ai, bj, ck) from measured inputs and outputs observation. With these parameters it is



possible to compute the estimated output ye(k) and compare it with the real output
y(k), computing the generated error (Fig.1).

ye(k) = [- a1·y(k-1) -...- ana·y(k-na)] + [b1·u(k-nk) + b2·u(k-nk-1) +...+ bnb·u(k-
nk-nb+1)] +[e(k) + c1·e(k-1) +...+ cnc·e(k-nc)]

(2)

where
� ye(k) is the estimated output by the model
� y(k), u(k), e(k) are real output, input and noise at present time
� y(k-1),..., u(k-1),..., e(k-1),... are real outputs, inputs and noises at previous time
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Fig. 1. System identification algorithm based on parametric estimation: inputs and outputs are
measured and computed to generate the estimated output from an ARMAX mathematical
model. Estimated output, in its matricial notation, is ye(k) = ϕT(k)·θ, where θ is the parameter
vector and ϕ(k) is the data vector.

1.2. Identification modes

The recursive parametric estimation estimates (and updates) θ in each time k,
modelling so the system. Obviously, to more identification (more sampled data
processed) better precision for the model because it has more information about the
system behaviour history. The SI will be performed by the Recursive Least Squares
(RLS) algorithm (also known forgetting factor –FF or λ-) because it is one of the
most precise and most used. From the initial conditions (k = p = initial time, θ(p)=0,
P(p)=10000·I, where I is the identity matrix), we start building ϕ(k), then:

ye(k)=ϕT(k)·θ(k-1)         err(k)=(y(k)-ye(k))         K=
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                θ(k) = θ(k-1) + K·err(k)

(3)



This algorithm, that we call CRLS (C means Classical), is specified with λ, P(0), θ(0)
and the observed values u(k), y(k), e(k). There is not any fixed value for λ parameter
(forgetting factor), even though the author of this algorithm recommends a value
between 0.97 and 0.995 [3]. The cost function F is defined as the value to minimize:
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(4)

where SN is the sample number.

1.3. Utility of the recursive identification for the system knowledge

Real systems are complex, with a great variability in their responses. It is necessary to
know the behaviour that can not be experimentally predicted in order to no endanger
the system security. As an example, in the prevision of critical or emergency
situations that may endanger the integrity of a process: For controlling it is necessary
to predict and for predicting it is necessary to know. This acknowledge, adquired by
means of the SI, consists in elaborating a mathematical model for covering the system
behaviour under all working conditions, even under the more extremes.
The SI allows to find, in sample time, a mathematical model (θ(k)) from which is
possible to elaborate future predictions. As identification advances in the time, the
predictions improve using more precise models. As an example, an architecture with a
specialized coprocessor that computes in sample time a system model and a central
processor that performs (with the computed model) a simulation of the system future
behaviour, forwarding real situations (Fig. 2).
For validating the SI evolutionary parallel architecture that we present, we use a
benchmark set, corresponding to SISO systems, found from real data sets [4] (Fig. 2).
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Fig. 2. Recursive SI allows us to predict and simulate future system behaviour. On the right
side, a capture of a real system benchmark used.



2. Evolutionary computation for System Identification

In the SI, the model is generated “a posteriori” using the measured and stored I/O
data. However we are interested in the system behaviour prediction in running time,
that is, while the system is working and its I/O are being observed. This may be the
case of some precision process controlled by its input signal for holding the output
signal within some limits, because of its quick and unpredictable behaviour. So, it
would be interesting to generate models in running time in such a way that a
processor may simulate the system next behaviour.
In other way, the system precision degree is due to the following three situations:
� The λ parameter. There is not any determined value for this parameter. In [2] and

[3] is recommended a value within 0.995 and 0.97. Other authors use 0.98. This
value may be critical for model precision.

� The model dimensions. There is not any determined rule that recommends the
model dimensions. It could be thought to more dimension better model, but it is
possible to find a reduced model with more performance than a bigger one.

� The system. Given values for λ and the model dimensions may model satisfactorily
a concrete system and no others. By that, it is foreseeable that system have its own
optimum parameters.

Also, it may appear the precision problem when a system model is generated in
sample time: If the system response changes quickly, then the sample frequency must
be high for avoiding the key data loss in the system behaviour description. If the
system is complex and its simulation from the model to be found must be very
trustworthy, then the required precision must be very high and this implies a great
computational cost. Sometimes the hardware resources does not allow the
computational cost in the model generation and processing to be lower than the
sample period.
We find the trade-off between a high sample frequency and a high precision in the
algorithm computation. The required precision to the SI by the λ parameter
optimization is a subject perfectly adapted to the use of techniques based on
evolutionary algorithms. So, the final target is to achieve an architecture for SI in real
time for processes in which will be necessary a high precision and a low sample time.

2.1. Choosing of optimization parameters

Fig. 3 show the estimated output for 4 values of λ for the ball benchmark and
ARMAX model with na=3, nb=2, nc=1, nk=1 running CRLS. The estimated output is
practically perfect according to the select value. Making an intensive computation of
155 values of λ in the range 0.6 – 1.2 we find as optimum values λ = 0.98961 and F =
1.40762. We can see that for finding an optimal value are necessary intensive
computations, however in some situations (real time systems) this is not possible.
Moreover, 0.98961 is an optimum value of λ only for modelling the ball benchmark
with dimensions (3,2,1,1). Each system has its optimum values, so a predetermined
general λ value for SI may drive to a precision loss in many SI. By that, it is
interesting to research about algorithms for finding the best λ values for each system.
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Fig. 3. System Identification CRLS of benchmark ball with different values for λ parameter.

In relation with the model dimensions, we can say, according to many computational
experiments, that for an acceptable dimension (of reasonable computational cost), λ is
more important as optimization parameter.

2.2. Proposal of an parallel evolutionary algorithm

For finding the optimum value of λ, we use an algorithm inspired on the evolution
concept [5][6]. Our algorithm, named PERLS (Parallel Evolutive Recursive Least
Squares), may be considered as an evolutionary algorithm because its optimization
parameter λ is going evolving to new situations during the successive phases of
algorithm execution. In PERLS, λ evolves at the same time that improves the cost
function performance (Fig. 4).

Fig. 4. PERLS evolution. In each phase, a set of λ values performs RLS identification during
certain number of samples (PHS). Then, the λ value whose corresponding F is the minimum of
all computed F is the optimal, and from it a new set of λ values is generated. They are used in
the next PERLS phase to perform new identification during the following PHS samples.

PERLS considers as state a λ value. Starting of an initial R value (being R the interval
of λ value generation) and an initial λ, a set of λ values is generated. This set covers
uniformly all the R interval, centered at λc (being λc the central value of R). The
number of λ values generated is equal to the parallel process units (PU) number
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(PUN). Each phase of the PERLS loop corresponds to a given number of sample
times. In these times the SI uses the considered λ. We use the following
nomenclature:

R generation interval
λc λ central in R
PHS phase samples
PUN number of process units
TSN total number of samples
RED reduction factor of R

Table 1. PERLS nomenclature.

In each phase, R is reduced by the RED factor, in such a way that the generated set of
λ will be more and more near of the previous optimum found. In each PU, during
each phase, the cost function F is computed. This cost function F is defined as the
accumulated error of the samples that constitutes each phase. From eq. (4), we have:

F(λPUx) = ∑
−+=

=
−

10

0

)()(
PHSkk

kk
e kyky

(5)

At the end of each phase, the best λ is choosed. This is the corresponding value to the
lower F. From this λ, new values are generated in a more reduced new R interval (Fig.
5 and 6). The goal is that the identifications performed by the PUs will converge to
optimum λ parameters when a given stop criterium will be achieved. So the
identification will be of high precision. It is clear that the larger PUN, the better
precision in the identification (better λ).

  λc;     /* initial λ */
  R;      /* initial generating λ interval */
  do  {
      Generating PUN λ’s from λc, covering all R interval
      do  {  /* phase = Identification or PHS samples */
          Computing acumulated error (F) in each PU
          during all samples of the phase
          }
          while(processing PHS samples);
      F(λ) = Accumulated error for each PU
      Determining λopt of all PUs for which F(λ) is minimum
      λc = λopt;
      R = R/RED;    /* R is reduced in a RED factor */
      }
      while(!stop criterium)

Fig. 5. PERLS pseudo-code.
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previous phase optimum λ found, corresponding with the smallest computed cost function.

2.3. Criteria to be considered

� Optimum λ criterium: Is the λ value that produces a minimum F. The precision of
this value depends of the assumed computational effort. The previous obtaining of
the optimal λ value for a system will allow us to compute the performance and
efectiveness of the evolutionary methodology.

� Stop criterium: It indicates when a PU stops the work, and it will be estimated by
the assumeable computational cost.

� Model generation (in the phase) criterium: In each phase of PERLS, a number of
identifications equal to PUN are performed. As CRLS uses initial values for θ and
P, and θ contains the ARMAX model parameters, there is the possibility to use the
θ found at the end of a phase as the initial θ for identification in the next one. The
two different configurations of this criterium are the following (Fig. 7):
 GMF1 criterium: In any phase and for all PUs, the identification will be made

by means of CRLS with θ initialized to 0.
 GMF2 criterium: For any PU, the identification in each phase will be made

with the θ found in the previous phase. So the identification in each phase
“remembers” the happened in previous phases.

� Optimum F definition (in the phase) criterium: When a phase ends in PERLS, the
optimal λ value must be choosed, that is the λ value that computes the minimum
cost function F. We consider two criteria for deciding the minimum F:



 FOP1: At the end of each phase, the optimum F is the lowest F in all phases
and in all PUs from the starting PERLS execution until the present time.

 FOP2: At the end of each phase, the optimum F is the lowest F computed by
all PUs in the present phase.

It seems more logical to use the FOP2 criterium. In any phase we need know the
best λ for the present I/O data range. Then, if we decide the best λ corresponds to a
past phase (with a lower F), we are not considering the same conditions, because in
the past phase it was used another I/O data range for computing λ. However, this λ
would be able to find worse results for the present I/O data.
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Fig. 7. Model generation (in the phase) criteria.

3. Parameter tuning

PERLS offers a great variability for its parameters. We show a case for analyzing this
variability and may guide us about the best values for the parameters: Benchmark
ball, with 4000 samples, ARMAX sizes {na=3, nb=2, nc=1, nk=1}, initial interval
{λc=1, R=0.8}, 20 values of λ to compute, and optimal λ value = 1.0288 and the
corresponding F = 1.435 (these data were obtained computing 20,000 consecutive λ
in the range from 0.9 to 1.1).
For the experiments will be comparables (valid for extracting conclusions), the total
number of processed λ must be the same in all experiments. We fix this number to 20.
As the number of evaluated λ by PERLS is PUN x PHN, only 6 combinations are
possible for PUN and PHS. These combinations are analyzed for 7 different values of
RED, moreover to contemplate the two criteria FOP and the two criteria GMF.
� GMF1. In Fig. 8a the F values for all experiments are shown. F corresponds to the

CRLS computation for the optimal λ value found at the end of PERLS evaluation
and for all benchmark samples. Analyzing the two graphics, it may be observed
that FOP2 is the best criterium and the best parameter combination found has been
PUN=5 and PHS=1000 (4 phases). The best RED have been 2 or 2.5.



� GMF2. In Fig. 8b the same experiment results are shown, but considering GMF2.
The conclusions are similar to those found with GMF1. Then, there is not any
difference for using GMF1 or GMF2, because the only appreciable differences are
produced when FOP criterium is changed.

For verifying the validity of these conclusions, we carry out the same experiments
with other benchmarks. From the results found we can conclude there are not
common politics for tuning the parameters in such a way that always the best results
will be found. The experience indicates the each system nature offers better
behaviours for different values of PERLS parameters.
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Fig. 8 (a,b). Experiments with benchmark ball.

4. Performance

We establish fixed values for PERLS parameters, in order to define an unique
algorithm applicable to any system. This has the advantage of an easier PERLS
synthesis on a digital architecture (our project in progress). This architecture will
quickly be applicable for SI without the previous task of tuning parameters. There is
the possibility of same parameter values will give good results in many systems but
worse in other ones. Besides this inconvenient, we believe it is useful to build a
PERLS general structure with fixed values of its parameters. This structure (Fig. 9)
will be subject to a proof versus an CRLS classic SI with an unique λ value. In Fig.
10 the dual results of PERLS performance, using tuned parameters, are shown.

Parameter Value
PUN 5
RED 2
PHN 4
PHS TSN / 4
GMF GMF2
FOP FOP2

ARMAX size na=3 nb=2 nc=1 nk=1

Fig. 9. Tuned parameters for the portable PERLS algorithm.



First of all, we apply CRLS to the benchmarks using λ values of 0.95 and 0.98, and
we compute the corresponding F values. Then, we apply PERLS for computing the
optimal λ value. With this value we compute the F corresponding to an CRLS
identification with this optimal λ value.

standard PERLS CRLS diference PERLS CRLS diference PERLS
bench TSN PHS PHN λλλλ F F (λλλλ =0.95) of F (%) is better F (λλλλ =0.98) of F (%) is better
ball 1000 250 4 0.975 1.42563 1.47218 3.16 YES 1.41907 0.46
boxjen 296 74 4 0.96875 134.728 134.871 0.11 YES 134.644 0.06
cstr1 7500 1875 4 0.925 0.49858 0.491946 1.35 0.515113 3.21 YES
cstr2 7500 1875 4 0.975 521.277 521.867 0.11 YES 521.13 0.03
dryer 1000 250 4 1.025 74.8104 81.7031 8.44 YES 77.3192 3.24 YES
exch 4000 1000 4 1 1441.11 1533.51 6.03 YES 1474.31 2.25 YES
fluttr 1024 256 4 0.9 2.88424 4.00232 27.94 YES 6.09777 52.70 YES
heat1 801 201 3.985 0.9 320.306 317.017 1.04 319.71 0.19
robarm 1024 256 4 0.95 11.181 11.181 0.00 YES 11.1709 0.09
gen0 2000 500 4 0.95 0.305919 0.305919 0.00 YES 0.301233 1.56
gen1 2000 500 4 1.05 44.1167 60.174 26.68 YES 58.6136 24.73 YES

Fig. 10. Benchmark results of PERLS. The columns “PERLS is better” inform when the F
corresponding to λ found by PERLS is lesser (and, by that, better) than the found by CRLS.

5. Conclusions

For λ=0.95, PERLS finds better results in all cases, except in the benchmarks heat1
and cstr1. For cstr1, the difference of corresponding F values does not achieve the 0.5
%. Only in one case PERLS is not better than CRLS with λ=0,95.
For λ=0,98, PERLS finds better results in the 50% of cases. However, and this is
important, for the other 50% of benchmarks, in all cases the difference of F oscillates
between 0.06 % and 1.56 %. That is, PERLS improves or holds the results found with
CRLS using λ=0.98.
We can say the parallel evolutionary methodology PERLS offers a good performance,
and this encourages us to follow this research and in a near future to achieve a PERLS
synthesis on reconfigurable hardware systems.
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