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Abstract. We propose an application of SVD model reduction to the
class of RBF neural models for improving performance in contexts such
as on-line prediction of time series. The SVD is coupled with QR-cp fac-
torization. It has been found that such a coupling leads to more precise
extraction of the relevant information, even when using it in an heuristic
way. Singular Spectrum Analysis (SSA) and its relation to our method
is also mentioned. We analize performance of the proposed on-line algo-
rithm using a “benchmark” chaotic time series and a difficult-to-predict,
dynamically changing series.

1 Introduction

In this work we suggest a method for improving the prediction performance of
RBF (Radial Basis Function) models. For this purpose, the SVD and QR-cp
matrix decomposition operations are used in a way similar to how usually SVD
linear model reduction is performed. What distinguishes our method from SVD
reduction in linear model theory, is the fact that the QR-cp step reorganizes the
results of the SVD computation. This serves to identify the relevant information
for prediction in the input series and also the relevant nodes in the network, thus
yielding parsimonious RBF models. An important characteristic of the proposed
method is also its capacity for on-line operation, although this could depend to
a given degree on parallelization of the matrix routines.

1.1 SVD Model Reduction for Linear Models

SVD-based model reduction can refer to a variety of algorithms that make use
of such a matrix decomposition for simplifying and reducing dimensionality in
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model-driven forms of data adjustment. The SVD (Singular Value Decomposi-

tion) of a rectangular matrix A of IKm×n (where IK usually denotes the real or
complex number field) dates from the 1960 and 1970 decades. Its computer im-
plementation has been thoroughly analyzed both for serial [GL96,Ste01] and par-
allel [BCC+97,BL85] computing architectures, although efforts in parallelization
(specially for specific applications) are still being carried out (e.g., [SOP+02]).

For a linear system the SVD computation allows to determine whether the
system has full or deficient rank. Normally, one looks for the singular values σi

(i = 1, 2, . . . , n), and values near to (or exactly) zero account for linear depen-
dence within the column set. A reduced basis for the subspace of IKm spanned
by the columns in matrix A is sought of dimension equal to r, the numerical
rank of the argument matrix. In this case we express A as

A =
r

∑

i=1

σiuiv
T
i , (1)

where r denotes the numerical rank, and (ui,vi) are the pairs of left- and right-
singular vectors from the SVD computation. Solving the reduced linear system
with the A in eq. (1) leads to a reduced linear model with r < n parameters.

1.2 Basic Operation of Singular Spectrum Analysis

The Singular-Spectrum Analysis (SSA for short) methodology has been system-
atized recently in the 1996 monograph of Elsner and Tsonis [ET96] and the 2001
book by Golyandina et al. [GNZ01]. This is a technique that makes use of SVD
for extraction of the trend, oscillatory and “structureless” noise components in
time series data. We point out that the idea had been implicitly suggested in
several papers before the 1990’s, e.g., by Broomhead and King [BK86]. The first
step in the SSA method is to set up the trajectory matrix A by using “moving
windows” of width W along the time series values {ft : t = 0, 1, . . . , N}; that is:

A ≡ [AT
1 AT

2 · · ·A
T
K ]T , (2)

where Aj = (fj , fj+1, . . . , fj+W−1). The structure of the resulting A is that of a
Hankel matrix [Bjö96]. A total of K = N−W+1 windows are needed to “cover”
all of the N time series values. The second step is the SVD of this trajectory
matrix. The series is then approximately reconstructed by an expansion

ft =

m
∑

k=1

f
(k)
t , t = 1, 2, . . . , N , (3)

where the column index set {1, 2, . . . , r} is partitioned as a set of disjoint classes
{Gk, k = 1, 2, . . . ,m} such that

A =
r

∑

i=1

σiuiv
T
i =

m
∑

k=1

∑

s∈Gk

σsusv
T
s ; (4)



and f
(k)
t is a smoothed time series obtained from diagonal averaging within the

outer product matrices belonging to the Gk group [GNZ01]. We notice that
“traditional” SVD corresponds to the special case Gk = {k}, ∀ k = 1, 2, . . . , r.
It remains a difficult problem that of determining the “optimal” partition of
indexes, such that (a) excessive smoothing is avoided, and (b) the additive-efect
implicit assumption in eq. (3) makes sense; that is, it leads to interpretable

or more-or-less identifiable effects for every f
(k)
t series. These are contradictory

requirements. For, if a smaller number of groups are used for the partition (for
the sake of identifiability), smoothing has to operate on a higher number of outer
products, which in turn can render the method useless.

2 On-line RBF Model that Uses SVD and QR-cp

SSA is a essentially model-free technique [GNZ01]. It does not tell us how to
perform adjustment of the series within each index group of usv

T
s matrices,

it just smooths out each component series f
(k)
t . Another drawback of the SSA

technique is its lack of consideration of possible on-line adjustment, this being
partially due to its birth within the statistics community. It has been claimed
that SSA offers results for moderate N that resemble very well its asymptotically
predicted behavior, but no formal proof has been given to date assuring such an
hypothesis. Other “more classical” time series decomposition methods (such as
those arising from the Wold Decomposition Theorem [Pol99]) are therefore most
likely to be used in practice by theoretically inclined researchers. For on-line
prediction, however, neither SSA nor traditional decomposition are useful. But
it can be suspected that the SVD role within SSA might be incorporated in a
similar way into powerful on-line models; that is exactly what we propose in the
following.

In the method we describe here (thoroughly described in [SOPP01]), a RBF
neural network performs on-line modelling of an input time series. A reduced
model is constructed both for the input delays and for the hidden layer of locally
receptive Gaussian activation units [MD89]. This is accomplished by setting up
successive trajectory matrices in the way shown in eq. (2), but coupling the SVD
with a QR-cp (QR with column pivoting [Bjö96]) phase in which we compute

V̄ P = Q[R1R2] , (5)

where V̄ = [v1v2 · · ·vr] (r is still the numerical rank of A) and the vi’s are the
r leftmost right singular vectors of A. Matrix Q is r × r and orthogonal, while
R1 and R2 are upper-triangular r × r and (n − r) × r matrices, respectively.
The point here is the consideration of the P permutation matrix as indicating
the relevant columns in matrix A. A justification for doing so was heuristically
given in [GL96]. This has been theoretically proven correct in more detail in one
of the authors’ PhD thesis [Sal01].

We suggest that successive matrices A be set up from the input stream of
time series values, on the one hand, and from the RBF hidden nodes activation



values, on the other. In the case of input matrices, SVD and QR-cp would
determine the relevant input lags, which are precisely those corresponding to
the selected columns. In the case of RBF activations, a pruning routine might
use SVD and QR-cp to select the relevant nodes, which are those associated
with the selected columns in successive activation trajectory matrices. All this
can be done on-line, provided that enough computing resources are available.
Unfortunately, the QR-cp does not allow to exploit the Hankel structure in
trajectory matrices [Bjö96]. Having this in mind, procedures have been devised
recently that concentrate effort on parallelization of the QR-cp over relatively
inexpensive concurrent computing platforms, such as “clusters” of computers
[SOP+02].

3 Experimental Results

We evaluated the performance of the proposed on-line prediction algorithm. A
window length W = 18 and K = 2W were used in the case of input matrices,
and W = M and K = 2M were used for successive neural activation trajec-
tory matrices, where M denotes the actual number of RBF nodes in the neural
network. The network starts empty and a preliminary input lag model is deter-
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Fig. 1. Prediction of the Mackey-Glass
chaotic time series, using our method
based on RBF model reduction by SVD
and QR-cp matrix decompositions.
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Fig. 2. Comparison of the number of
neurons. Our SVD and QR-cp based
model attains only 18 neurons; other
versions of Platt’s algorithm (that
doesn’t take into account model reduc-
tion) need up to 40 neurons.

mined from the first 3W −1 input values. Some preliminary RBF nodes are then
allocated according to the found lags. When given conditions on the error and
position of the RBF centers hold (concretely, those given by the widely-known
Platt’s algorithm [Pla91]), a new trajectory matrix is determined from past val-
ues (with respect to the actual instant) to yield an updated input structure. Five
randomly positioned RBFs were added with each increase of the input model



dimension. The pruning routine based on the neural activation trajectory ma-
trices is continuously looking for non-relevant nodes. A RBF node is pruned if
it is not included in the selected subset of activation columns, for more than 20
consecutive iterations of the algorithm. So, parsimony in the model compensates
a bit for the extra computation needed by the matrix decompositions.

Results for prediction of the “benchmark” Mackey-Glass chaotic time series
are depicted in Figures 1 and 2. The converging input model determined quickly
after the first 500 on-line iterations was the same (lags 0, 6, 12, 18) as the one
proposed by recent chaos-theoretic studies (e.g., [WG93]). In Figure 2 it is ob-
served that our model attains only 18 neurons, compared to up to 40 for the
Platt method alone (without SVD and QR-cp). For the dynamically changing

Fig. 3. Results of prediction for the
laser time series in [WG93]. Notice the
quick adaptation to the abrupt change
in the series dynamics.

Fig. 4. Evolution of the number of
nodes (RBFs) for prediction of the laser
series in [WG93]. The effect of the
pruning routine based on the SVD and
QR-cp decompositions is evident when
a change in the series dynamics occurs.

laser series from reference [WG93], very good results are also obtained. In this
case the input model (0, 2) is very simple, and our method identified it in as
few as six iterations. The interesting point in this case is to see how the number
of RBF nodes adapts to a unexpected change in the series dynamics. Figure
3 illustrates the effect of the allocation and pruning strategies, while Figure 4
shows that the prediction, although maybe not as exact as in the Mackey-Glass
case, quickly adapts to the overall behavior of the series.

4 Conclusions

We have suggested in this paper a way of incorporating the SVD operation
over trajectory matrices (drawn from the SSA research community), coupled
with QR-cp decomposition, as an aid to constructing better predictive RBF



models. The on-line algorithm suggested is conceptually simple, although some
future work on relating the theory of RBF approximations with the matrix
decompositions could be useful for better insight into the potential of this and
related methods for on-line time series prediction. The experiments shown give
an indication of the kind of applications that could benefit from such a kind of
unifying theory.
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[Bjö96] Å. Björck. “Numerical Methods for Least Squares Problems”. SIAM
Publications. Philadelphia, U.S.A. (1996).

[BK86] D.S. Broomhead and G.P. King. Extracting qualitative dynamics from
experimental data. Physica D 20, 217–236 (1986).

[BL85] R.P. Brent and F.T. Luk. The solution of singular value and symmetric
eigenvalue problems on multiprocessor arrays. SIAM Journal on Scientific
and Statistical Computing 6, 69–84 (1985).

[ET96] J.B. Elsner and A.A. Tsonis. “Singular Spectrum Analysis: A New Tool
in Time Series Analysis”. Plenum Press. New York, U.S.A. (1996).

[GL96] G.H. Golub and C.F. Van Loan. “Matrix Computations”. The Johns
Hopkins University Press. Baltimore, Maryland, U.S.A., third edition (1996).

[GNZ01] N. Golyandina, V. Nekrutkin, and A. Zhigljavsky. “Analysis of Time
Series Structure: SSA and Related Techniques”. Chapman & Hall/CRC
Press. Boca Raton, Florida, U.S.A. (2001).

[MD89] J. Moody and C.J. Darken. Fast learning in networks of locally-tuned
processing units. Neural Computation 1, 281–294 (1989).

[Pla91] J. Platt. A resource allocating network for function interpolation. Neural
Computation 3, 213–225 (1991).

[Pol99] D.S.G. Pollock. “A Handbook of Time Series Analysis, Signal Processing
and Dynamics”. Academic Press. London, U.K. (1999).

[Sal01] M. Salmerón. “Time Series Prediction with Radial Basis Neural Network
and Matrix Decomposition Techniques”. PhD thesis (in spanish). Depart-
ment of Computer Architecture and Computer Technology. University of
Granada, Spain (2001).

[SOP+02] M. Salmerón, J. Ortega, A. Prieto, C.G. Puntonet, M. Damas, and

I. Rojas. High-performance time series prediction in a cluster of computers.
Concurrency and Computation: Practice & Experience (submitted) (2002).

[SOPP01] M. Salmerón, J. Ortega, C.G. Puntonet, and A. Prieto. Improved
RAN sequential prediction using orthogonal techniques. Neurocomputing
41(1–4), 153–172 (2001).

[Ste01] G.W. Stewart. “Matrix Algorithms—Volume II: Eigensystems”. SIAM
Publications. Philadelphia, U.S.A. (2001).

[WG93] A.S. Weigend and N.A. Gershenfeld. “Time Series Prediction: Fore-
casting the Future and Understanding the Past”. Addison-Wesley. Reading,
Massachusetts (1993).


