
Generating Mathematics Drills Automatically?

Ana Paula Tom�as, Jos�e Paulo Leal, and Pedro Vasconcelos

DCC-FC & LIACC, Universidade do Porto,

R. do Campo Alegre, 823, 4150-180 Porto, Portugal

fapt,zp,pbvg@ncc.up.pt

Keywords: Automatic Generation of Drills, Computer-based training, Con-
straint Programming

Topics: AI Foundations and Knowledge Representation, Constraint Satis-
faction, Planning and Scheduling, AI in Education and Intelligent Tutoring Sys-
tems.

Abstract. We propose a methodology for designing online exercises sys-

tems with special focus on applications to Mathematics education. The

major goal is to develop a web-based environment that make available

exercises and solutions to students (and teachers). Ongoing study aims

at investigating whether Constraint Logic Programming frameworks are

adequate to implement such a system. Encouraging results are reported

in this paper, indicating that these languages have the right expressive-

ness to encode control on the system in an elegant way.

1 Motivation

Not all students have high mathematical skills but surely one of the reasons for
the lack of success in mathematics is that too often students merely memorize
how to solve some exercises, instead of trying to understand the fundamental
concepts and results. Hence, a possible drawback of classical textbooks and some
existing online course-ware and exercise systems is that the proposed problems
are quite pre-de�ned, either �xed or at best randomly generated instances of the
same problem template [4, 5].

Rather than to reproduce the classical textbooks, advances in the computer
technology and the Internet should be exploited to develop really interactive
and re-usable contents. Quite sophisticated web-based learning environments
are being developed. For example, ActiveMath [14], that is a second-generation
interactive textbook project o�ering user-adaptiveness and reusability by em-
ploying an XML-based representation of mathematical knowledge and Arti�cial
Intelligence techniques. Alike [4], it supports exploratory learning through com-
munication with mathematical systems.

Commercial mathematical systems, as Geometer's Sketchpad [6], Maple[11]
and Mathematica [13], just to name a few, are often used as mathematics tools

? Work partially supported by funds granted to LIACC through Programa de Finan-

ciamento Plurianual, Funda�c~ao para a Ciência e Tecnologia and Programa POSI.

for exploratory learning [8, 15], enabling the students to try their own exam-
ples. Some already o�er access to their applications through web browsers [13].
The focus of this paper is not on problem solving in the broader sense of explo-
ration, but rather on the repetitive drills students have to do for consolidation
of concepts and practice of algebraic procedures. For constructive learning to be
e�ective, students need self-con�dence and also basic knowledge.

Lots of mathematics teaching resources are spread over the Web, namely web-
based systems for computer aided training and/or assessment, with authoring
facilities for teachers to create question �les, for example, for homework and as-
signments (e.g. [1, 5, 9, 14]). This requires non-negligible e�ort from the teacher,
specially to generate problem instances that are not immediately recognized as
simple variants of a few basic expressions. In fact, for all the systems we know,
the exercises are not generic enough and the user can almost anticipate the form
of the next instance of the problem, after a while.

This paper reports on our experiences in using a computer algebra system
(Maple) and Constraint Logic Programming (CLP) frameworks to automatically
generate online examples and exercises for teaching and learning a topic in math-
ematics. Our �nal goal is to develop a system that dynamically computes a wide
range of examples that really look di�erent for students, despite they naturally
obey some given speci�cation. Moreover, the system shall optionally provide ex-
planations that may help students improve their ability to express coherently in
mathematical language.

Our approach has many di�erent potentials that include user-adaptiveness,
easy de�nition of several curricula, and possible integration in intelligent tutor-
ing systems. The methodology we adopt to characterize an application domain
mimics the one teachers usually follow when they try to formulate basic problems
in some context. Firstly we have to de�ne and represent the forms of exercises
that may be solved by the procedures that students shall learn. Secondly, the
exercises must have pedagogical interest, so that we must have some idea of their
solutions. The best strategy is then to proceed from an intended solution and/or
solving procedure to formulate a problem instance. In this way, we may also en-
sure that the generated problems are solvable by the computational system (and,
hopefully, by the student at a given level), thus avoiding undecidability issues.
Although not all the topics taught in mathematics at high school allow such
an automatic treatment, a considerable number do. Many of the questions that
students have to work out in Mathematics courses may successfully be solved by
algebraic procedures. If these procedures are also implemented, the generated
problems can be completely solved and the solving steps explained, in contrast
to systems that implement deduction schema, as theorem provers.

This idea is also implicit in a recent work by Sangwin [16], although the
emphasis there is on how to generate exercises that get the students to con-
struct instances of mathematical objects with some properties. How to reduce
the teachers' e�ort to prepare questions is not considered at all and, moreover,
it is assumed that they have some expertise in writing computer programs. Ac-
tually, it is examined the application of AIM [9], which is an authoring system for

computer aided assessment that ultimately uses Maple to process the exercises
but that counts on the teacher to program the exercises and in some situations
their grade scheme. This is quite di�erent from what we have in mind.

Although we expected that the use of computer algebra systems could highly
reduced our implementation e�ort, our experience (with Maple) has shown that
the algebraic simpli�cations may turn out troublesome. As we shall detail in
the following section, some additional constraints shall be imposed, for instance,
on the expressions that arise in the exercises, to avoid inconsistencies in the
explanations that are produced.

This paper is intended to present the results we have achieved so far. To
illustrate the main ideas we refer to a particular topic in Introductory Calcu-
lus, giving, in Section 3, a grammar that characterizes a vast sample of exam-
ples from some high school textbooks. This grammar shall still be extended
to cover other functions taught. The interesting point is that we now may get
specialized forms of the expressions almost for free, by adding further restric-
tions through constraints. This is of great importance for educational purposes
since the system must be parametrized to easily cater for di�erent curricula.
In the following section, we discuss strengths and weaknesses of our �rst at-
tempt to implement some programs to generate problems and examples using
a computer algebra environment. The need for a more declarative framework,
led us to investigate the use of CLP, that o�ers natural support for possible
user-de�ned constraints on the expressions. Section 4 describes aspects of our
prototype implementation and briey address interface issues. Programs that
have been developed as a testbed for some of the ideas may be download from
http://www.ncc.up.pt/~apt/demomath.html.

2 Some Experiments Using a Computer Algebra System

In this section, we discuss some pros and cons of using Maple to develop interac-
tive course-ware, which may be common to other computer algebra systems. Our
previous work involved the design of Maple worksheets to present some speci�c
topic in mathematics. Besides some concise notes on the addressed issue, such
worksheets typically include pointers to other ones where the end-user student
may �nd randomly generated examples and exercises to work on. They have
been developed in the scope of a course on Computers in Education, some of
them by undergraduate Computer Science students.

Some of the algebraic procedures that students learn are crucial to di�er-
ent problems. For example, in introductory calculus, the analysis of the sign
variation, zeros and domain of real-valued functions is a basic tool to �nd inter-
vals where a function is monotonic, to study concavity and convexity for twice
di�erentiable functions and to sketch their graphs. But, it is quite easy to de-
�ne functions for which no generic algorithm exists to compute accurately their
zeros, as shown independently by Abel and Galois, about a century ago, for
polynomials of degree greater than four. In the following example, we consider
the generation of rational functions de�ned by a quotient of two polynomial

expressions so di�erent as the following ones.

(�x�
p
5)5

x5 � 4x4 + 6x3
(�x3 � x

2)

(x+ 2)3
(x+ 1)4(x5 + 3x4 + 2x3)

(x2 + 1)2(�2x� 2�
p
7)

Example 1. We shall present some output from one of our Maple programs that
is helpful for the discussion. Some typesetting has in fact been done for space
reasons.

> domains(true);

FIND THE DOMAIN OF THE FUNCTION f DEFINED BY

f(x) =
(8x2 + 14x� 15)(2x+ 1)

(4x6 � x5 � 5x4)(3x2 � 17x+ 10)2

SOLUTION: Being f a rational function, it is defined for all

real numbers except the zeros of the denominator of its expression.

We have

(4x6 � x
5 � 5x4)(3x2 � 17x+ 10)2 = 0

if and only if 4x6 � x
5 � 5x4 = 0 or (3x2 � 17x+ 10)2 = 0.

As concerns 4x6 � x
5 � 5x4 = 0, we have

4x6 � x
5 � 5x4 = 0 , x

4(4x2 � x� 5) = 0

, x = 0 _ 4x2 � x� 5 = 0

To solve 4x2�x�5 = 0, we apply the solving formula for polynomial

equations of degree 2, the roots being -1 and 5/4.

As concerns (3x2 � 17x+ 10)2 = 0, we have

(3x2 � 17x+ 10)2 = 0 , 3x2 � 17x+ 10 = 0

To solve 3x2 � 17x + 10 = 0, we apply the solving formula for

polynomial equations of degree 2, the roots being 2/3 and 5.

We conclude that all real numbers are in the domain of f, but

2/3, 0, -1, 5 and 5/4.

As other computer algebra systems, Maple supports polynomial expressions
and thus it is easy to implement this procedure. The main issue is how to control
the diÆculty level of the problems. The idea is to abstract their form from the
rules students could use to solve them. For educational purposes, we also need to
have some control on the generated polynomial expressions, so that the exercise
may have pedagogical interest. Instead of simply using the builtin Maple proce-
dure to generate random polynomials, the computation of f(x) was driven by
the selection of the set of roots, which might be rational and (conjugated) irra-
tional numbers. Factors with no real roots were obtained by adding appropriate
constants to quadratic polynomial expressions with real roots to shift their re-
presenting parabolas upwards or downwards so that every intersection with the

horizontal axis is eliminated. Both the denominator and numerator are factored
and the factors may be the following basic forms: ax+ b, ax2+ bx+ c, (ax+ b)n,
(ax2+bx+c)n and ax

n+1+bx
n, axn+2+bx

n+1+cx
n, where a; b; c 6= 0. The idea is

that the student has to know how to solve linear and quadratic equations,Xn = 0
and that axn+1+bx

n = x
n(ax+b) and ax

n+12+bx
n+1+cx

n = x
n(ax2+bx+c).

In this phase, we discarded expressions as (axn+2 + bx
n+1 + cx

n)m, because we
did not think they are of great pedagogical interest.

An important point that deserves some further research is how to improve the
linguistic quality of the output explanations. It is not trivial to obtain explana-
tions in natural language by annotating the programs. In this example, almost
no use was made of global context information, which renders the explanations
fairly repetitive and, therefore, unnatural or pedagogically poor. This seems to
apply also to intelligent tutoring systems. Besides the need for a more exible
input/output interface, three other remarks have played a major role in our
decision to try a di�erent platform. The �rst one concerns the algebraic manip-
ulations that Maple automatically performs, which may result in unpredictable
simpli�cations of the expressions being operated. This feature appears as a great
advantage when compared to Logic Programming systems, but is surely a seri-
ous drawback for our intended usage of the system. Actually, it may introduce
some puzzling inconsistencies in the output explanations. For instance, it is not
possible to print 3(x2 + 5) in Maple since it will naturally yield 3x2 + 15. By a
similar reason we had better not ask the student to �nd the domain of a rational
function de�ned by f(x) = (x � 1)2=(x � 1) because that expression would be
printed as f(x) = x� 1, and 1 hence belongs to domain of the latter but not of
the former one. In Example 1, simpli�cations were avoided by further restrict-
ing the types of the generated rational functions f(x) to disallow repetitions of
factors (either in a product or quotient) and to require that the involved poly-
nomials just have integer coeÆcients. Since we would like to cover more general
expressions, this does not seem the right way to procceed. The second point is
that we need declarativeness to help specify the possible form of the expressions.
Finally, we would like the application to be well parametrized to cater for di�er-
ent curricula. For both these aspects, CLP seems to o�er the right expressiveness
to encode control on the system in an elegant way. The disadvantage is that we
now have to implement symbolic processing of algebraic expressions to provide
exact representations of the solutions, which hopefully have quite simple pre-
de�ned forms. It is worth mentioning that CLP languages are rather adequate
for symbolic processing, all one needs is either to spend sometime implementing
a symbolic processor or to �nd and reuse some existing one. DiÆculties have
also appeared when we tried to combine di�erent constraint solvers, since it is
almost impossible to share variables between them in a natural way.

We shall now elaborate on abstract representations for the expressions, that
we need to characterize the problem templates and to simplify the solving pro-
cedures. For that purpose, we give a grammar that characterizes a wide range of
the function expressions that may be found in high school textbooks and whose

zeros can be exactly computed. This grammar extends the set of functions we
considered in Example 1.

3 A Case Study { Calculus for Pre-University Levels

In order to be able to abstract the possible forms of function expressions, we
have carried out a thorough analysis of Portuguese textbooks in mathematics
for grades 10 to 12. As a result, we de�ned the grammar shown in Fig. 1.

For prototyping, the trigonometric, exponential and logarithmic functions
have been left out. Basically, with this grammar we try to capture some of the
expressions for which the computation of the domain and zeros mainly involves
solving linear or quadratic equations (ax+b = 0 or ax2+bx+c = 0), or equations
of the form aX

n + b = 0, a
n

p
X + b = 0, Xn � Y

n = 0,
n

p
X � n

p
Y = 0, for

n � 2, or X=Y � Z=T = 0, with degree(XT) � 2 and degree(Y Z) � 2, or
even some case-based reasoning to get rid of the absolute value operators. We
note that by writing, for instance, (k*)?rad(N; basic12)+ (k*)?rad(N; basic12)

we really want to restrict N to be the same for both subterms, so that the
grammar is not context-free1. We use (k*)?rad(N; basic12) as an abbreviation
for k*rad(N; basic12) or rad(N; basic12), and * means product.

p1 o TypeT pol(T; [a; b]) aT + b

p2 o TypeT pol(T; [a; b; c]) aT
2 + bT + c

xip(1; N) expand(N; x; pol(x; [a; b])) ax
N+1 + bx

N

xip(2; N) expand(N; x; pol(x; [a; b; c])) ax
N+2 + bx

N+1 + cx
N

pow(N) o TypeT pow(T;N) T
N

rad(N) o TypeT rad(T;N)
N

p
T

abs o TypeT abs(T) jT j
p2 o pow(N) o x pol(pow(x;N); [a; b; c]) ax

2N + bx
N + c

instead of bisqr(N) instead of bisqr

The rightmost column of this table contains the the output expressions that
correspond to the basic types, that are given in the �rst two columns. In our
CLP programs the latter are used as the internal representation of these basic
expressions, two levels of abstraction being used. It may be checked that

(8x2 + 14x� 15)(2x+ 1)

(4x6 � x5 � 5x4)(3x2 � 17x+ 10)2

is of the form

pol(x; [8; 14;�15]) � pol(x; [2; 1])
expand(4; x; pol(x; [4;�1; 5])) � pow(2; pol(x; [3;�17; 10]))

And, we may also conclude that �2j � 2y + 4j+ 4j3y + 3j+ 2 belongs to bsum

(i.e., basic sum expression), since it is given by

pol(abs(pol(y; [�2; 4])); [�2; 0])+ pol(abs(pol(y; [3; 3])); [4; 2])
1 In fact, it is known that f0n10n10n1 j n � 1g is not a context-free language.

function �! (k*)?prodfact j (k*)?divexpr
prodfact �! factor j prodsexpr
divexpr �! prodfact/prodfact j k/prodfact j prodfact/k

�! pow(N; divexpr) j rad(N; divexpr) j abs(divexpr)

prodexpr �! factor*factor j factor*prodexpr
�! pow(N; prodsexpr) j rad(N; prodsexpr) j abs(prodsexpr)

factor �! sumexpr j vxip j basic
sumexpr �! abs(sumexpr) j pow(N; sumexpr) j rad(N; sumexpr) j bsum
bsum �! ipol1(vquot12k)

�! (k*)?rad(N; basic12) + (k*)?rad(N; basic12)

�! (k*)?pow(N; basic12) + (k*)?pow(N; basic12)

�! (k*)?pow(N; basic12) + (k*)?pow(2N; basic1)

�! (k*)?rad(2N; basic12)+ (k*)?rad(N; basic1)

�! (k*)?rad(2; basic12)+ (k*)?basic1
�! (k*)?pow(2; basic1)+ (k*)?basic12
�! (k*)?basic12 + (k*)?basic12
�! (k*)?quot12k + (k*)?basic12; subject to Condition

�! (k*)?quot12k + (k*)?quot12k; subject to Condition

vquot12k �! pow(N; vquot12k) j rad(N; vquot12k) j quot12k
quot12k �! k/basic12 j basic12/k j basic12/basic12 j abs(quot12k)

basic12 �! basic1 j basic2
basic2 �! fpol1(abs(basic2)) j ipol2(x) j expand(1; x; ipol1(x))

�! basic1*basic1 j fpol1(pow(2; basic1)) j pow(2; basic1)

�! abs(basic2)

basic1 �! abs(basic1) j fpol1(abs(basic1)) j fpol1(x)
basic �! ipol2(x) j expand(1; x; ipol1(x)) j bisqr j fbasic

�! fpol1(fbasic) j fpol1(x)
fbasic �! abs(basic) j pow(N;basic) j rad(N;basic); N � 2

vxip �! xip j k*vxip j abs(vxip) j pow(N;vxip) j rad(N;vxip); N � 2

xip �! expand(N,x,ipol2(x)) j expand(N + 1,x,ipol1(x)); N � 1

bisqr �! ipol2(pow(N;x)); N � 2

fpol1(T) �! pol(T,[a; b]); a 6= 0

ipol2(T) �! pol(T,[a; b; c]); abc 6= 0

ipol1(T) �! pol(T,[a; b]); ab 6= 0

x �! variable

k �! constant

Condition: Being either of the form (k*)?A=B + (k*)?C with degree(BC) � 2 or of

the form (k*)?A=B + (k*)?C=D with degree(AD) � 2 and degree(BC) � 2.

Fig. 1. A coarse characterization of functions that may appear in exercises

To solve equations that involve sum expressions one may need to know how to
solve X

n � Y
n = 0,

n

p
X � n

p
Y = 0, for n � 2, or X=Y � Z=T = 0, with

degree(XT) � 2 and degree(Y Z) � 2. We notice that, in general we would not
be able to solve the �rst two if instead of 0 we had a non-null constant k.

In the grammar, some categories have names that are indexed by 1, 2 or 12,
because they result from the basic category when we restrict the degree to be 1,
2, or any of these two. As for vquot12k and quot12k the idea is that the numerator
and denominator have degrees 1, 2, or 0. To avoid de�ning more grammar rules,
the abbreviate notations fpol1(T), ipol2(T) and ipol1(T) were introduced. For
instance, ipol2(pow(N;x)) rewrites to pol(pow(N;x); [a; b; c]) by applying the
rule (scheme) for ipol2(T).

4 Generating Exercises in a CLP System

CLP languages are quite convenient for naturally encoding requirements of the
exercises. By imposing constraints on parameters of the problems generator, we
may tune them and thus control the problems diÆculty and adequacy for a
certain curriculum, stage or user. In order to test these ideas, we have developed
a prototype of such a generator in SICStus Prolog [18] using CLP(FD) [3].
In this section, we assume the reader is familiar with CLP languages, and in
particular CLP(FD) (for an introduction and some references, see e.g. [12]).
The constraint solver shall mainly be used to do consistency checking and to
propagate constraints on the exponents and on the number of occurrences of
some combinations of particular function types. So, the optimization facilities of
the CLP systems shall not be utilized.

In the implementation, a higher level of abstraction for the types of expres-
sions is considered, as shown in the leftmost column of the table given above.
This is done by introducing type schemes with constrained �nite domain vari-
ables to represent sets of expressions of the same form, that is to represent
expression templates. They almost mimic the grammar categories, and the main
idea is that the composition of functions (herein denoted by o) is the main
operation to enable the de�nition of complex functions from the elementary
ones. Hence, for example, power() o ip(1) o (p1 o x/p1 o x) represents
pow(ipol1(fpol1(x)=fpol1(x)); N), which, by the grammar, is a sumexpr. The
following expression is a particular instance of this type scheme�

�2
�2x� 1

�3x+ 4
+ 3

�7

and has type power(7) o ip(1) o (p1 o x/p1 o x). Here, ip(1) and p1 re-
place ipol1 and fpol1, respectively. In general, the grammar rules are imple-
mented by predicates of the form

category(Type,Degree,Rate,CountTypes,CountOps)

the main one being function(Type,Degree,Rate,CountTypes,CountOps). The
parameters Degree, Rate, CountTypes, CountOps are used to constrain the re-
sulting scheme Type. This allows the impose constraints to control the diÆculty

level or form of the generated expressions and to tackle user-de�ned constraints.
For the moment, the overall rate is merely a sum of such rates.

Instances of the expressions of a given Type are obtained by a predicate
expression(Type,X,Expr). For each type scheme, we may generate several ex-
pressions of that type by repeatedly calling expression/3. Variations of the
same example, in which the coeÆcients and exponents may change, can be eas-
ily found by forcing backtracking, in the CLP framework. Now, instead of saving
all the constraint store on the exponents for later usage, the system would rather
save either a particular instance of the type scheme or some pre-de�ned number
of expressions that conform the scheme. To test the program and in particu-
lar to see how quickly it runs, we de�ned a predicate examples/5 that obtains
one exercise of each type for some given speci�cations, through backtracking.
It is quite amazing how quickly it obtains a huge number of expressions. E.g.,
examples(probs2,2,9,12,z) writes expressions in the variable z, of degree 2
and diÆculty level in [9,12] to the �le probs2. The expressions of a given de-
gree shall evaluate to polynomials of that degree when simpli�ed to get rid of
abs and pow, and do not contain quotients and radicals. Di�erent algorithms
may be implemented to de�ne expression/3, which may even be specialized
to the particular problem we have in mind. One possibility was described in
Example 1, but we may also simply compute coeÆcients at random, though
within a given range of pedagogical interest. Another possiblility would be to
use the program to generate several exercises which would later be �ltered out,
in view of the special application. If only partial consistency is enforced, we
have to guarantee that the (random) labeling process eventually stops, when
no solution exists. Our program currently implements committed-choice, pre-
venting backtracking to the randomizer when a feasible value is found to the
variable. In this way, the program may fail to �nd a solution even if one exists.
This problem is not speci�c of CLP and other strategies could be devised to
overcome it. The type scheme plays a crucial role not only during the genera-
tion phase but also to render the implementation of problem solvers easier. We
are mainly using CLP(FD) to generate the expressions, which then naturally
would have integer coeÆcients. We have also made some simple experiments
in using constraint programming, namely CLP(R), to de�ne and tackle some
conditions on the �nal expressions. However, the results had almost no interest
for educational purpose. Further details on the implementation may be found
in [20]. The use of a constraint language helps simplify the implementation. As
an example, basic12 is just Dgr in 1..2, basictype(T,Dgr,Rate,Ts,Ops), if
basic/5 implements the grammar category fbasic. Nevertheless, it is still not
easy to implement a constrain-and-generate strategy in order to avoid intro-
ducing what can be seen as symmetries in types. Indeed,being + a commutative
operator, abs o p1 o x + abs o p2 o x and abs o p2 o x + abs o p1 o x

should be the same type. Some symmetries may be �ltered out by propagating
constraints on the number of operators.

In general, the system needs to support symbolic processing of algebraic
expressions to provide exact representations of the solutions. Indeed, CLP(Q) [7]

could be used for �nding the solutions, but expressions should have degree 1 and
not involve the abs construct, so that they would be quite elementary. We have
already implemented a prototype program to �nd the zeros and the domains of
some of the expressions, in which computations involving rationals are performed
by the CLP(Q) solver. Symbolic manipulation of irrational numbers is supported
only for special forms, which for educational purposes are quite suÆcient. As for
domains, the system may need to exactly solve disequations and disjunctions,
so that the CLP(Q) solver cannot be utilized to discard symbolic manipulation
of constraints, even when no irrationals are involved.

We would like to obviate the need for students to learn a special syntax just
for typing and reading formulas on the computer, unlike in WebMathematica [13].
The system already integrates a program to convert the internal representations
of the mathematical expressions and solutions to LateX. Previously we have also
considered using a prototype viewer/editor of MathML documents, written to
Tcl/Tk [20]. With the purpose of illustrating the behaviour of the prototype
system, we are developing a web interface using the PiLLoW package [2]. We
are analising also the integration of the system in a web-based environment.
In particular we study the integration in Ganesh [10], although, so far, this
distributed learning environment has been mainly used for Computer Science
topics, with an emphasis on the automatic grading and correction of students
exercises.

5 Conclusions

We proposed a methodology for designing online exercises systems with special
focus on applications to Mathematics education. The emphasis is on working
backwards from the intended solution of the problem to obtain a sequence of
steps leading to that solution. Prototype programs using CLP show that these
languages have the right expressiveness to encode control on the system in an
elegant way. The main drawback is that we cannot take complete advantage
of CLP solvers to reduce the implementation e�ort. Indeed, we need to handle
symbolic representations of some types of irrational numbers. Moreover, we also
need symbolic processing of constraints, for example, to be able to �nd the
domains of functions. Since the system must have great control on the solving
procedure to be able to explain the solving steps, we think we would not bene�t
if we used other languages and platforms to realize the system.

References

1. Bryc W., Pelikan S.: Online Exercises System, University of Cincinnati, 1996.

(http://math.uc.edu/onex/demo.html)

2. Cabeza D., Hermenegildo M., Varma S.: The PiLLoW/CIAO Library for INTER-

NET/WWWProgramming using Computational Logic Systems. In Proc. of the 1st

Workshop on Logic Programming Tools for INTERNET Applications, JICSLP'96,

Bonn, 1996. (http://www.clip.dia.fi.upm.es/miscdocs/pillow)

3. Carlsson M., Ottosson G., Carlson B.: An Open-Ended Finite Domain Constraint

Solver. In Proceedings of PLILP'97, LNCS 1292, 191-206, Springer-Verlag, 1997.

4. Cohen A. M., Cuypers H., Sterk H.: Algebra Interactive, Springer-Verlag, 1999.

5. Gang X.: WIMS { An Interactive Mathematics Server, Journal of Online Mathe-

matics and its Applications, 1, MAA, 2001. (http://wims.unice.fr)

6. Geometer Sketchpad, Key Curriculum Press. (http://www.keypress.com/sketchpad)

7. Holzbaur C.: OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute for

Arti�cial Intelligence, Vienna, TR-95-09, 1995.

8. Kent, P.: Computer-Assisted Problem Posing in Undergraduate Mathematics, In-

stitute of Education, University of London 1996. (http://metric.ma.ic.ac.uk)

9. Klai S., Kolokolnikov T., Van der Bergh, N.: Using Maple and the web to grade

mathematics tests, International Workshop on Advanced Technologies, Palmerston

North, New Zealand, December 2000 (allserv.rug.ac.be/~nvdbergh/aim/docs)

10. Leal J. P. and Moreira N.: Using matching for automatic assessment in computer

science learning environments, Proceedings of Web-based Learning Environments

Conference, 2000. (http://www.ncc.up.pt/~zp/ganesh)

11. Maple, Waterloo Maple Corporate. (http://www.maplesoft.com)

12. Marriott K., and Stuckey P.: Programming with Constraints { An Introduction,

The MIT Press, 1998.

13. Mathematica, Wolfram Research Inc.

(http://www.wolfram.com/products/mathematica)

14. Melis E. et al.: ActiveMath: A Generic and Adaptive Web-Based Learning Envi-

ronment, Arti�cial Intelligence in Education, 12(4), 2001.

(http://www.mathweb.org/activemath)

15. Moore L., Smith D. et al.: Connected Curriculum Project CCP, Duke University,

2001. (http://www.math.duke.edu/education/ccp)

16. Sangwin C.J.: New opportunities for encouraging higher level mathematical learn-

ing by creative use of emerging computer aided assessment. University of Birming-

ham, UK, May 2002. (www.mat.bham.ac.uk/C.J.Sangwin/)

17. Schr�onert M. et al.:GAP { Groups, Algorithms, and Programming. Lehrstuhl D

f�ur Mathematik, Rheinisch Westf�alische Tecnhische Hochschule, Aachen, Germany,

1995.

18. SICStus Prolog User Manual Release 3.8.6, SICS, Sweden, 2001.

(http://www.sics.se/isl/sicstus.html)

19. WeBWorK, University of Rochester, 2001. (http://webwork.math.rochester.edu)

20. Tom�as A. P., Vasconcelos P.: Generating Mathematics Exercises by Computer.

Internal Report DCC-2001-6, DCC - FC & LIACC, University of Porto, 2001.

