
A compiler and simulator for
partial recursive functions over neural networks

João Neto1, José Félix Costa2, Paulo Carreira3, and Miguel Rosa4

1 Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa,
C5 – Piso 1, 1700 Lisboa, PORTUGAL,

jpn@di.fc.ul.pt
2 Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais,

1049-001 Lisboa, PORTUGAL,
fgc@math.ist.utl.pt

3 OBLOG Software S.A., Alameda António Sérgio 7-1A 2795-023
Linda-a-Velha PORTUGAL,
pcarreira@oblog.pt

4 Fundação para a Computação Científica Nacional Av. do Brasil, 101.
1700-066 Lisboa. PORTUGAL,

mar@fccn.pt

Summary

Artificial Recurrent Neural Networks have the same computing power as Turing
machines. A Turing machine can be programmed in a proper high-level language - the
language of partial recursive functions.
In this paper we present the implementation of a compiler that directly translates high-
level Turing machine programs to Artificial Recursive Neural Networks. The application
contains a simulator that can be used to test the resulting networks. We also argue that
these experiments provide clues to develop procedures for automatic synthesis of Neural
Networks from high-level descriptions.

Keywords: Neural Networks, Partial Recursive Functions, Modular Networks.



A compiler and simulator for
partial recursive functions over neural networks

João Neto1, José Félix Costa2, Paulo Carreira3, and Miguel Rosa4

1 Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa,
C5 – Piso 1, 1700 Lisboa, PORTUGAL,

jpn@di.fc.ul.pt
2 Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais,

1049-001 Lisboa, PORTUGAL,
fgc@math.ist.utl.pt

3 OBLOG Software S.A., Alameda António Sérgio 7-1A 2795-023
Linda-a-Velha PORTUGAL,
pcarreira@oblog.pt

4 Fundação para a Computação Científica Nacional Av. do Brasil, 101.
1700-066 Lisboa. PORTUGAL,

mar@fccn.pt

Abstract. In [6] and [8] it was shown that Artificial Recurrent Neural Networks have the
same computing power as Turing machines. A Turing machine can be programmed in a
proper high-level language - the language of partial recursive functions.
In this paper we present the implementation of a compiler that directly translates high-
level Turing machine programs to Artificial Recursive Neural Networks. The application
contains a simulator that can be used to test the resulting networks. We also argue that
these experiments provide clues to develop procedures for automatic synthesis of Neural
Networks from high-level descriptions.

1 Introduction
The field of Artificial Recurrent Neural Networks (ARNNs) is meeting a lot of excitement
nowadays. Both because of their achievements in solving real world problems and their
simplicity of the underlying principles that still allow them to mimic their biological
counterparts. All this excitement attracts people from many different fields such as
Neurophisiology and Computer Science.

We introduce our subject from a Computer Science perspective. The view we are interested
in, is the one in which an ARNN can be seen as a computing mechanism able to perform some
kind of computation based on a program coded as a specific arrangement of neural artifacts,
like neurons and synapses. This work implements a compiler and a simulator based on the
previous Turing Universality of Neural Nets (Revisited) paper, [4]. In [3], [7] and [5] similar
ideas are given but they are based on higher level languages.

We start by giving the underlying theoretical context on which it is based. In section 2 we
give a brief review of the concept of partial recursive function. In section 3 we present our
approach for constructing neural networks from partial recursive functions. The explanation of
how we adapted the design of [4] into a compiler is given in section 4. Section 5 refers to the
simulator and usage examples and section 6 concludes this paper. The simulator is freely
available at www.di.fc.ul.pt/~jpn/ netdef/nwb.html.



2 Partial Recursive Function theory
When informally speaking of a neural computer, one could be motivated about what could it be
like the language to program such a machine. The language that we will use is the one of partial
recursive functions (PRF). Although primitive when compared to modern computer languages,
it is simple and powerful enough to program any mechanism with same computing power as a
Turing machine. Surely, building complex programs with this language would be very difficult
and more appropriate languages exist. For our purposes however, this language is suited.

The PRF theory identifies the set of computable functions with the set of partial recursive
functions. We shall use a(x1,…,xn) ≡ b(x1, …, xn) to denote equality of the expressions
a(x1,…,xn) and b(x1,…,xn), if and only if both a(x1, …, xn) and b(x1, …, xn) are defined for all
(x1, …, xn) or both undefined.

The axioms also called primitive functions are:

• W that denotes the zero-ary constant 0;

• S that denotes the unary successor function S(x)=x+1;

• U(i,n) that for i and n fixed, 1≤i≤n, denotes the projection function Ui,n(x1, ..., xn) = xi.

The construction rules are:

• C, denoting composition. If f1, …, fk are n-ary PRFs, and g is a k-ary PRF, then the
function h defined by composition, h(x1, …, xn) ≡ g(f1(x1, …, xn), …, fk(x1, …, xn)), is a
PRF;

• R, denoting recursion. If f is a n-ary PRF and g is a (n+2)-ary PRF, then the unique
(n+1)-ary function h, defined by

1) h(x1,…, xn, 0) ≡ f(x1,…,xn) and
2) h(x1,…, xn, y+1) ≡ g(x1,…,xn, y, h(x1,…, xn, y));

is a PRF;

• M, denoting minimalisation. If f is a (n+1)-ary PRF, then h(x1,…, xn) ≡
µy(f(x1,…, xn, y)=0) is also a PRF, where µy(f(x1,…, xn, y)=0) =



least y such that f(x1,..,xn,y)=0 and

∀ z≤y: f(x1,…,xn,z) is defined
undefined, otherwise

For instance, f(x,y)=x+1 is a PRF and is described by the expression C(U(1,2),S). The
function f(x,y)=x+y is also a PRF described by the expression R(U(1,1), C(U(3,3),S).
In fact, it can be shown that every Turing computable function is a PRF. More details on PRF
theory can be found in [1] or [2].

3 Coding PRF into ARNNs
Finding a systematic way of generating ARNNs from given descriptions of PRF’s greatly
simplifies the task of producing neural nets to perform certain specific tasks. Furthermore, it
also gives a proof that neural nets can effectively compute all Turing computable functions as
treated in [4].

In this section we briefly describe the computing rule of each processing element, i.e., each
neuron. Further we present the coding strategy of natural numbers to load the network. Finally,
we will see how to code a PRF into an ARNN.



3.1 How do the processing elements work?

Like in [4] we make use of σ-processors. In each instant t each neuron j updates its activity xj in
the following non-linear way:

xj(t+1) = σ ( ∑
i=1

N
ajixi(t) + ∑

k=1

M
bjkuk(t) + cj )

where aji, bjk and cj are rational weights; N is the number of neurons, M the number of input
streams uk; and σ is the continuous function defined below:

σ(x) =



 1 , x≥1

x , 0<x<1

0 , x≤0

3.2 How can we represent the numbers?

We use an unary representation where each natural number is represented as a rational number
by means of a mapping α where, for each n, α(n) is given by

∑
i=0

n
101-i

3.3 How to construct the ARNN?

The following three net schemata were implemented to compute the corresponding three
axioms of recursive function theory. Changes were made with respect to [4]. First, the W axiom
is provided with two additional neurons. Second, each U(i,n) axiom is constructed with only
five neurons making it more efficient.

Figure 1. Axioms (i) W; (ii) S; (iii) U(i,n).

The rules are illustrated by the net schematas of figures 3, 4 and 5 (check appendix), where
grey coloured circles represent repeated neurons. The Sg box represents a subnet that finds if a
given number is positive or zero.

0.1

OUTIN

x+1
x

–0.9

(ii)

IN

OUT

0
0.1

(i)

...

...
xi

xn

x1

xi

OUT
IN

(iii)



Figure 2. The signal (Sg) network.

For each PRF expression an ARNN is generated using the structure of the expression. The
construction of the ARNNs is made in a top-down fashion, beginning with the outermost
ARNN and then continuously instantiating ARNNs until reaching the axioms.

For an expression R(U(1,1),C(S,U(3,3)) we would first build the network for the
recursion, then instantiate with the projection axiom network and with the composition rule
network, that in turn would accommodate the successor and projection axiom networks.

This instantiation mechanism for the network schemas consists of replacing the boxes by
compatible network schemas. A box is said to be compatible with a network schema if the
number of inputs (respectively outputs) of the box is the same as the number of inputs
(respectively outputs) of the network schema. The substitution operation of a box by a network
schema consists of connecting the box inputs (respectively outputs) to the network inputs
(respectively outputs).

4 Putting the pieces together and building the compiler
The tool we want to present to the user, should be capable of handling more complex functions
than the simple examples used in the previous sections. Specifying a more complex function
implies writing a more complex expression. This motivates the use of a modular and yet simple
language to increase readability.

A PRF description is a sequence of statements where each statement is a pair that contains
an identifier and an expression. The identifiers label the statement of an associated expression.
Each expression is written in the language of PRF described in section 2 (recursive application
of rules to rules and axioms) and may reference a previous statement.

For example, when specifying the product PRF we can initially write the statement for the
sum PRF and follow it by a shortened product PRF expression in which the sum expression is
substituted by the initial sum identifier as shown below.

sum R(U(1,1), C(U(3,3), S))
product R(Z, C(U(3,3), U(1,3), sum))

The idea is to write further expressions making use of the previously defined ones.

5 Using the simulator and compiling examples
An application was built to provide the user not only with a compiler of PRF into ARNNs but
also a simulator that among other things allows step-by-step simulation and inspection groups
of neurons. In our application there are two modes of building ARNNs: by compiling the PRFs
or by reading the dynamic equations system that define the neural network. We do not only
allow the storage of PRF description, but also of compiled PRF in order to avoid recompiling
and to provide input to other simulation tools. The simulator takes the already built ARNN and
configures it to read the input. Then it requests each neuron to process data. This process is
iterated until a signal is seen in the OUT line of the outmost network.

During the ARNN computation, the program allows the user to inspect the computations
that are taking place inside the net, being able to select some sets of neurons and customise the

=1 if x=0

–1

x

IN

–100

2

2

100 =1 if x>0

–2–0.1



animation. The user can also see the corresponding equation of each neuron and define a limit
for the number of iterations.

To each neuron is given a name by the compiler with special meaning. The name of each
neuron expresses particular information on the neuron we are working with, in the following
way:

• Func is one of W, S, U(i,j), R, C, M.
• Type is one or more of the following:

In Stands for the IN line supporting neurons.
Out Stands for the OUT line supporting neurons.
Data Stands for neurons that receive parameters from external networks or that send

result of computation to other networks.
Res Stands for neurons that handle results of functions.
Hid Stands for neurons not in one of the border layers.

• Num is the number of the neuron inside its network schema.
• Depth is the same as the depth in the corresponding PRF parsing tree.
• Id is used to ensure an unique identifier for each neuron.

Some examples of function descriptions are given in the table below:

Table 1. Some PRF descriptions

Function Expression

f=0 W

f(x)=x+1 S

f(x,y,z)=y U(2,3)

f(x)=0 R(W, U(2,2)) → also called Z

f(x,y,z)=z+1 C(U(3,3),S)

f(x,y)=x+y R(U(1,1),z+1)

f(x,y)=x*y R(Z,C(U(3,3),U(1,3),x+y))

f(x)=x! R(C(Z,S),C(U(2,2),C(U(1,2),S),x*y)

f(x)=xy R(C(Z,S),C(U(1,3),U(3,3),x*y)

f(x)=sg(x) R(C(W,S),C(W,U(1,2)))

f(x,y)=x-1 R(W,U(1,2))

f(x,y)=x-y R(U(1,1),C(U(3,3),x-1))

f(x,y)=|x-y| C(x-y,C(U(2,2),U(1,2),x-y),x+y)

f(x,y)=min(x,y) C(U(1,2),x-y,x-y)

f(x,y)=max(x,y)
C(C(x-y,x+y),C(C(x-y,x+y),C(x-y,x-
y),x-y),x+y)

f(x,y)=rm(x,y)
R(Z,C(C(U(3,3),S),C(C(U(1,3),C(U(3,3)
,S),|x-y|),sg),x*y))

f(x,y)=x|y C(rm,sg)

f -1 (y) M(C(C(C(U(2,2),fx),U(1,2),|x-y|),sg)



As an example, let us consider the following description of the sum function:

proj/1 U(1,1)
proj/2 U(3,3)
comp C(proj/2,S)
sum R(proj/1,comp)

Notice that this function is not limited by any integer value (there is no MAXINT), since the
precision of the rationals used is not limited (it is, however, finite), in the same sense of a
Turing Machine tape. After the compilation of these four statements we have an ARNN with 39
neurons and 70 synapses. Below are presented the first lines of the dynamic equation system:

XRin_1_0(i+1) = σ(Ein(i))
XRhid2_1_1(i+1) = σ(XRin_1_0(i))
XRhid3_1_2(i+1) = σ(0.1*XRin_1_0(i) + XRhid3_1_2(i) +

XRhid4_1_3(i) - XRhid5_1_4(i) - XREout_1_15(i))

XRhid4_1_3(i+1) = σ(0.1*XRhid3_1_2(i) + XRhid5_1_4(i) - 0.9)

XRhid5_1_4(i+1) = σ(XRhid6_1_5(i))
XRhid6_1_5(i+1) = σ(XSout_4_7(i))
XRhid7_1_6(i+1) = σ(XRhid3_1_2(i) + XRhid15_1_14(i) - 1)

XREres_1_7(i+1) = σ(XRhid13_1_12(i) + XRhid19_1_18(i) - 1)

...

The simulator is freely available at www.di.fc.ul.pt/ ~jpn/netdef/nwb.html.

6 Conclusion
We hope to have taken one step further in understanding the relationship between programming
languages and ARNNs. We started presenting a theoretical framework of a very simple
programming language. Next, we described a systematic way of obtaining ARNNs from
programs written in the presented language and concluded with the presentation of a tool where
one can get a practical insight of the presented results.

Although the ideas here contained may seem oversimplified when facing real-world
applications, the problem itself (can some type of ARNNs perform exact symbolic
computation?) has an affirmative answer. Also, this answer gives an automatic process of
translation from the mathematical description of any Turing computable function into a final
Neural Network able to compute that function. The precise relevance of this work is to
establish a computational equivalence of this simple model of ARNNs and Partial Recursive
Functions (itself an Universal model of computation), which is modular-oriented (making
complexity management of large programs easier to deal with).

Adapting them to other more elaborate frameworks like those of high-level languages is
straightforward, as it can be seen in [5]. Finally, we also defend that the search for a language
more suited to the architecture of ARNNs can give us fresh views on efficient approaches for
systematic construction of ARNNs.

Acknowledgements
We would like to thank the technical and financial support given by LabMAC and the
Portuguese R&D agency Fundação de Ciência e Tecnologia. Also, a special thanks for Hava
Siegelmann by all the past scientific colaborations within this project.



References
1. Boolos, G. and Jeffrey, R., Computability and Logic (second edition), Cambridge

University Press, 1980.
2. Cutland, N., Computability – An introduction to recursive function theory, Cambridge

University Press, 1980.
3. Gruau, F., Ratajszcza J., and Wiber, G., Fundamental study – A Neural Compiler,

Theoretical Computer Science, Elsevier, 141, 1995, 1-52.
4. Neto, J., Siegelmann, H., Costa, J., and Araújo, C., Turing Universality of Neural Nets

(Revisited), Proceedings of Computer Aided Systems Theory – EUROCAST’97, 1997.
5. Neto, J., Siegelmann, H., and Costa, J., Symbolic Processing in Neural Networks, to be

published at the Journal of Brasilian Computer Society, 2001.
6. Siegelmann, H. and Sontag, E., On The Computational Power of Neural Nets, Journal of

Computer and System Sciences, Academic Press, [50] 1, 1995, 132-150.
7. Siegelmann, H., On NIL: The Software Constructor of Neural Networks, Parallel

Processing Letters, [6] 4, World Scientific Publishing Company, 1996, 575-582.
8. Siegelmann, H., Neural Networks and Analog Computation, Beyond the Turing Limit,

Birkhäuser, 1999.

Appendix

Figure 3. Recursion.

g(…)

OUT

h(…)

=0

IN

g

Sg

f(x1,…,xn)

OUT

f
H

–1

–1.2 10

>0

IN

y Y

0.2

0.1

0.1

…

…
.

x1

xn

IN

X1

Xn

–1

–1

X1

Xn

–1

–1

–1

-10

–1

K

–0.9

H

OUT

–1–1

reset
Y Xi

–1–1

reset
K H

–1

–1

IN



Figure 4. Composition.

Figure 5. Minimalisation.

10

0.10.1

=0

>0

Sg
f(x1,…,xn,y)

OUT IN OUT

h(...)

f

–1

–1–1

reset
Y Xi

–0.9

Y

...

x1

xn

IN

X1

Xn

–1

–1

–1–1

IN

xn

… …

…

..

.

x1

f1(x1,…,xn)

h(…)
y1

fk(x1,…,xn)

OUT

IN

OUT

OUT
yk

f1

IN

g

fk

–1

–1

–1

–1

–1 – (k–1)

–1

–1

…


