
Machine Learning Models for On-Line Dynamic 
Security Assessment of Electric Power Systems  

C. M. Rocco S., J. A. Moreno 

Universidad Central, Facultad de Ingeniería, Apartado 47937, Caracas 1040A, Venezuela  
e-mail: { rocco,jose}@neurona.ciens.ucv.ve 

Abstract. In this paper we compare two machine learning algorithms 
(Support Vector Machine and Multi Layer Perceptrons) to perform on-
line dynamic security assessment of an electric power system. Dynamic 
simulation is properly emulated by training SVM and MLP models, 
with a small amount of information. The experiments show that although 
both models produce reasonable predictions, the performance indexes of the 
SVM models are better than those of the MLP models. However the MLP 
models are of considerably reduced complexity. 

1 Introduction 

An important task in the real-time operation of an electric power system is to 
accurately assess the dynamic response during a system disturbance [1]. In this case, 
it is important to evaluate the system robustness to establish effective emergency 
control measures such as under frequency load shedding, in order to prevent system 
collapse [2,3].  

The dynamic behavior of the electric power system, usually analyzed using time-
domain simulation methods or Lyapunov´s stability theory is a very time demanding 
task. Based on simulation results, the state of the system is classified as 
“secure/insecure”. Due to the computationally cost involved and the repetitious use of 
dynamic simulators, large efforts have been made toward developing fast algorithms 
to deal with the prediction of the system dynamic behavior. 

In the literature several approaches have been presented to address the definition of 
these algorithms: pattern recognition [4], neural networks [2], decision tree [5], 
regression trees [6] and associative dichotomous classification [1]. In this work, 
empirical models, built by training a Support Vector Machine (SVM) and a Multi 
Layer Perceptron (MLP) are compared. SVM provides a new approach to the two-
category classification problem (“secure/insecure”)[7] whereas MLP is one of the 
most common applied method. To our best knowledge, the SVM approach has not 
been yet used to evaluate on-line dynamic behavior. 

The paper is organized as follows: In section 2 the methods used in this paper are 
introduced, section 3 presents the proposed approach to assess the dynamic response 
of an electric power system and, finally section 4 presents and compares the results.  



2 Global Machine Learning Models 

2.1 Suppor t Vector M achine 

 
Support Vector Machines provide a novel approach to the two-category 

classification problem  [7]. The methods have been successfully applied to a number 
of applications ranging from particle identification, face identification and text 
categorization to engine detection, bioinformatics and data base marketing. The 
approach is systematic and properly motivated by statistical learning theory [8]. 

SVM is an estimation algorithm (“learning machine”) in which the training phase 
involves optimization of a convex cost function, hence there are no local minima to 
complicate the learning process. Testing is based on the model evaluation using the 
most informative patterns in the data (the support vectors). Performance is based on 
error rate determination as test set size tends to infinity [9]. 

Suppose X i is a power system state vector whose components represent the 
variables that are going to characterize a given operating condition, and yi is the result 
of applying a dynamic simulation model (DSM): yi = DSM(X i). Additionall y, if X i is 
a secure state then yi = 1, otherwise yi = -1. 

Consider a set of N training data points { (X1,y1), …. (XN,yN)} . The main idea is to 
obtain a hyperplane that separates secure states from insecure states in this space, that 
is, to construct the hyperplane H: y = w · X-b = 0 and two hyperplanes parallel to it:  

H1: y = w · X-b = +1 and H2: y = w · X-b = -1 (1) 

with the condition, that there are no data points between H1 and H2, and the 
distance between H1 and H2 (the margin) is maximized. Figure 1 shows such case 
[10].  

The quantities w and b are the parameters that control the function and are referred 
as the weight vector and bias [8]. 

The problem can be formulated as: 
Min ½ wTw 
w,b 
s.t     yi (w · X-b) ≥ 1 

(2) 

This is a convex, quadratic programming problem in (w, b), in a convex set.  Using 
the Lagrangian formulation, the constraints reduce to those on the Lagrange 
multipliers themselves. Additionally a consequence of this reformulation, is that the 
training data will only appear in the form of dot product between data vectors [7]. 
Introducing Lagrange multipli ers α1, ….., αN ≥ 0, a Lagrangian function for the 
optimization problem can be defined: 

Lp(w,b,αα) = ½ wTw  - Σi (αiyi(w ·Xi-b) - αi)                              (3) 

Now Lp must be minimized with respect to w and b with the condition that the 
derivatives of Lp with respect to all the αi, vanish and αi ≥ 0 [7]. This formulation 



corresponds to a convex quadratic programming problem, with a convex objective 
function. Additionally those points that satisfy the constraints also form a convex set.  

So the following “dual” problem can be formulated: Maximize L p, subject to the 
constraints that the gradient of Lp with respect to w and b vanish and αi ≥ 0.  The 
stationarity conditions give the foll owing relations [7]: 

w = Σi αiyi Xi                                                               (4) 

Σi αiyi = 0                                                                     (5) 

From here, substituting in (3) the Wolfe dual formulation [7,8,11] is obtained: 

LD =  Σi αi  - ½ Σij αiαjyiyj Xi  ·   Xj                                                (6) 

Solving for αi and computing b gives w = Σi αiyiXi. 
Once a SVM has been trained it is simple to determine on which side of the 

decision boundary a given test pattern X* lies and assign the corresponding class label, 
using sgn (w· X*- b). 

When the maximal margin hyperplane is found, only those points which lie closest 
to the hyperplane have αi > 0 and these points are the support vectors, that is, the 
critical elements of the training set. All other points have αi = 0. This means that if all 
other training points were removed and training was repeated, the same separating 
hyperplane would be found [7]. In figure 2, the points a, b, c, d and e are examples of 
support vectors [10].  

Small problems can be solved by any general-purpose optimization package that 
solves linearly constrained convex quadratic programs. For larger problems, a range 
of existing techniques can be used [8]. 
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Fig. 1. Decision hyperplanes generated by a linear SVM [10] 

If the surface separating the two classes is not linear, the data points can be 
transformed to another high dimensional feature space where the problem is linearly 
separable.  
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Fig. 2.  Example of support vectors [10] 

The algorithm that finds a separating hyperplane in the feature space can be 
obtained in terms of points in input space and a transformation function Φ(·). It is not 
necessary to be expli cit about the transformation Φ(·) as long as it is known that a 
kernel function K(Xi,Xj) is equivalent to a dot product in some other high dimensional 
feature space [7,8-13]. A kernel function must satisfy Mercer’s theorem [11], there 
are many kernel functions that can be used this way, for example [7,8]:  

K(Xi,Xj) = e -||Xi-Xj ||²/2σ² the Gaussian radial basis function kernel 
K(Xi,Xj) = (Xi ·  Xj + ml )p  the polynomial kernel  
K(Xi,Xj) = tanh(β(Xi ·  Xj))  the hyperbolic tangent kernel  

With a suitable kernel, SVM can separate in feature space the data that in the 
original input space was non-separable. This property implies that nonlinear 
algorithms can be obtained by using proven methods that handle linearly separable 
data sets [11]. 

The choice of the kernel is a limitation of the support vector approach. Some work 
has been done on limiting kernels using prior knowledge [11]. In any case, the SVM 
with lower complexity should be preferred. 

2.2 Multi layer Perceptrons [14] 

A multi layer perceptrons is a kind of artificial neural networks composed of layers of 
differentiable parametric non-linear functions, in general, sigmoid or hyperbolic 
tangent. 

From a mathematical point of view, an MLP model with only one output unit is 
defined by a non-linear weighted combinations of m hyperbolic tangents of weighted 
sums of the input vector: 

si

i

b)btanh(tanh
���

;f( +




 •+•= ∑ isi wwxx  (7) 

where the estimated output is a function of the input vector and the parameters θ: 
w

i, wis, bs. 



The set of parameters can be estimated by minimizing an error cost function. The 
most common errors measure used id the mean squared error between the desired 
output and the estimated outputs, for a given training set: 

Q = Σ(yi-f(x;θ))2 (8) 

For this case, a gradient descent algorithm based on the computation of the partial 
derivative of the error function with respect to all the parameters, can be used to 
estimate the parameters. The gradient descent can be executed for each parameter by 
an iterative process of the form:  

θ(t+1) = θ(t) +λ∂Q/∂θ (9) 

where λ < 1 is the learning rate. 
A disadvantage of this model is that the optimization process can get stuck in a 

local optimum.  

2.3 Performance Evaluation 

The performance of a binary classifier is measured using sensitivity, specificity and 
accuracy indexes [15]: 
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where: 
TP=Number of True Positive classified cases (The learning machine correctly 
classifies) 

TN=Number of True Negative classified cases (The learning machine correctly 
classifies) 

FP= Number of False Positive classified cases (The learning machine labels a case 
as positive while it is a negative) 

FN= Number of False Negative classified cases (The learning machine labels a 
case as negative while it is a positive) 

For power system dynamic evaluation, sensitivity gives the percentage of correctly 
classified secure states and the specificity the percentage of correctly classified 
insecure states. 



3 Proposed Approach 

In order to apply the previous models in power system dynamic evaluations, two data 
sets are built (training and testing) and only different states are selected, that is there 
are no replicated states in the data sets.  

Each power system state is represented by a vector Xi whose components represent 
the variables that are going to characterize a given operating condition. As suggested 
in [3], the following variables were considered: the active and reactive power of all 
generators, spinning reserve, active and reactive load, among other. As the DSM will 
be replaced by a machine learning model the data set is built by sampling the 
configuration space of the electric power system. A random system state is generated 
by varying the values of the previously mentioned variables and applying the DSM.  

A system state Xi is classified as insecure if the minimum frequency that the 
system experiments after a disturbance is less that a specific value.  

4. Example 

The system to be studied is the 60 Hz power system of an oil company in Venezuela, 
with several types of gas-fired units and a meshed 115 kV transmission network. An 
equivalent system with a total of 18 variables was considered. A system state is 
classified as insecure if the frequency is less than 59.3 Hz.  

The training data set consists on 770 samples (596 states were secure and only 174 
were insecure), whereas the testing data set consists on 3018 states: 2735 states were 
secure and only 283 were insecure.  

In the SVM approach different kernels were tried. The optimization required in the 
training phase was performed using the Sequential Minimal Optimization approach 
discussed in [13]. The best SVM found corresponds to a second order polynomial 
kernel, with ml=4, based on 131 support vectors. This SVM model completely 
separates the training set, and shows good generalization capacity. 

In the MLP, the architecture used consists on an 18 dimension input vector, one 
hidden layer of variable unit number and one output unit. The best MLP had one 
hidden layer with 14 processing units. It is interesting to note that the best MLP did 
not separate completely the training data set, achieving an accuracy of 93.50 %. 

In order to compare mathematical similar models, experiments with an hyperbolic 
tangent kernel were carried out. 

Table 1 presents the performance results for both models over the testing data set. 

Table 1. Performance Results for different models 

Model Support 
Vectors 

Number of 
parameters 

Sensitivity 
% 

Specificity 
% 

Accuracy 
% 

SVM, p=2 131 2359 94.92  91.88  94.63 
SVM tanh 228 4105 96.05  82.33  94.76  
MLP m=14 ------- 281 92.83  84.45  90.63  



It is interesting to note the SVM models are superior to the MLP model, since the 
performance indexes are higher. In the most similar models from a mathematical 
point of view (SVM with a hyperbolic tangent kernel and MLP), the SVM model 
shows a better sensitivity and accuracy than the MLP model, while the specificity is 
very similar.  

5 Conclusions 

 
This paper has evaluated on-line dynamic security assessment of electric power 
system based on two machine learning models. In the example presented both models, 
built from a small sample of the state space, produce dynamic evaluation with a 
satisfactory accuracy. However, SVM models outperform in all cases the best MLP. 
Nevertheless, from a complexity point of view, MLP models are less complex since 
they depend on smaller number of parameters.  
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