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Abstract. Portfolio selection represents a challenge where investors look for 
the best firms of the market to be elected. This research presents a real world 
application at the Mexican Stock Exchange (La Bolsa) using a set of heuristic 
algorithms for portfolio selection. The heuristic algorithms (random, genetic, 
greedy, hill-climbing and simulated annealing) were implemented based on the 
Markowitz Model where the investor can select the size of the portfolio as well 
as the expected return.  

1   Introduction 

Portfolio selection is the activity involved in selecting a portfolio of stocks that meets 
or exceeds an investor’s stated objectives [1]. This process is fundamentally based on 
two variables, expected return and risk. Markowitz established that investors would 
optimally hold a mean-variance efficient portfolio [2]. This is a portfolio with the 
highest expected return for a given level of variance. Markowitz assumed that 
investors are risk averse, this means accepting higher risk only if they get higher 
expected return. Therefore, investors will prefer a portfolio that offers at least the 
same expected return than a single stock but with an overall lower risk. This is named 
diversification. Unsystematic risk is generated by the performance of the companies 
or industries; therefore, a good selection of the companies is important for the 
performance of the portfolio. 

One of the most important tasks in portfolio selection is the selection of the firms 
that will be part of the portfolio. This research presents a set of heuristic algorithms to 
obtain the assets (firms) that will be part of the portfolio with the minimum risk at a 
certain level of expected return. In other words, portfolio selection is presented as an 
optimization problem trying to minimize the risk subject to the size of the portfolio 
and expected return established by the investor. 

This article is organized as follows: Section 2 establishes the problem as well as 
the mathematical formulation. Section 3 presents the set of heuristic algorithms used 
in this research. Section 4 shows the experiment using real data from the Mexican 
Stock Exchange. Section 5 discusses our findings and conclusions. 
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2   Mathematical Formulation 

In this section, it is presented the mathematics of mean-variance efficient sets, which 
will be needed to find portfolios at the efficient frontier. The complete solution can be 
consulted at Campbell 1997 [2]. 
     There will be N risky assets with mean µ  and covariance matrix Ω . Assume that 
the expected returns of at least two assets differ and that the covariance matrix is of 
full rank. aω  is defined as the )1(Nx  vector of portfolio weights for an arbitrary 
portfolio a  with weights summing to unity. Portfolio a  has mean return 

µωµ '
aa =  and variance aaa ωωσ Ω= '2 . The covariance between any two 

portfolios a  and b  is ba ωω Ω' . Portfolio p  is the minimum-variance portfolio of 

all portfolios with mean return pµ . The solution of ωω
ω

Ω'min  subject to 

pµµω ='  and 1' =iω  is shown in Equation 3. 
 

 

µωµ '
aa =  (1) 

aaa ωωσ Ω= '2  (2) 

pp hg µω +=  (3) 

 
where g  and h  are 1Nx  vectors, 

)]()([1 11 µ−− Ω−Ω= AiB
D

g  
(4) 

)]()([1 11 iAC
D

h −− Ω−Ω= µ  
(5) 

where: 

µ11 −− Ω= iA  (6) 

µµ 1' −Ω=B  (7) 

iiC 1' −Ω=  (8) 
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 where i  = vector of ones. 
 
     Based on the previous equations, the objective is to minimize the variance subject 
to the number of stocks of the portfolio. Therefore, Equation (2) is used as the fitness 
function for the heuristic algorithms. 

3   The Heuristic Algorithms 

3.1   The Genetic Algorithm 

The genetic algorithm is presented below: 
procedure genetic algorithm 
  begin 
    t=0; 
    select portfolio P(t) at random; 
    evaluate portfolio P(t); 
    while (not termination_condition) do 
    begin 
      t=t+1;  
      select P(t) from P(t-1); 
      alter P(t); 
      evaluate P(t); 
    end 
  end; 

The portfolios are constructed using a vector of integers where each stock is 
represented by an integer number from 0 to n where n represents the size of the 
market. The size of the vector is determined by the preferences of the investor. The 
initial population of the algorithm is generated at random, and for this implementation 
300 portfolios are used as the population of the algorithm. 

The fitness function for this algorithm is the risk calculated from the variance and 
covariance matrix. See Equation (2). 

Two basic genetic operators are used for this implementation, crossover and 
mutation. The mutation operator alters one stock within the portfolio based on the 
probability of mutation. On the other hand, the crossover operator needs to work with 
modified portfolios to prevent duplicated stocks. An extra algorithm was developed to 
move from real portfolios realm to modified portfolios realm and vice versa to be 
successful while applying the crossover operator. 

On the other hand, the selection method is tournament selection. The tournaments 
take place between three portfolios, the winner is copied to the next generation. 

Finally, the parameters of this implementation are shown in Table 1. 
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Table 1. The genetic algorithm parameters 

Parameter Value 
Population size 300 
Generations 200 
Probability of mutation 0.75 
Probability of crossover 0.01 

 

3.2   The Random Algorithm 

The random algorithm is implemented by generating random portfolios within a loop 
and keeping the best portfolio. The algorithm is shown below: 
 
procedure random 
  begin 
    t=0; 
    select portfolio P(t) at random; 
    evaluate portfolio P(t); 
    repeat 
      generate portfolio P(t+1) at random; 
      evaluate portfolio P(t+1); 
      if P(t+1) risk < P(t) risk; 
        then P(t)=P(t+1); 
    until t=MAX 
  end; 

In this implementation MAX=60,000 which is taken from population times 
generation from the genetic algorithm. 

3.3   The Hill-Climbing Algorithm 

The hill-climbing solution is an approach that looks for a local optimum. The 
algorithm is shown below: 
procedure hillclimbing 
  begin 
    t=0; 
    select portfolio P(t) at random; 
    evaluate portfolio P(t); 
    repeat 
      generate portfolio P(t+1) by modifying 
         one stock of P(t) at random; 
      evaluate portfolio P(t+1); 
      if P(t+1) risk < P(t) risk; 
        then P(t)=P(t+1); 
    until t=MAX 
  end; 

For this implementation MAX=60,000 to have the same opportunities. 
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3.3 The Greedy Algorithm 

Greedy algorithms attack a problem by constructing the complete solution in a series 
of steps [3]. This algorithm is very simple to implement and very fast to run, but 
assumes that taking optimum decision at each step is the best solution overall. 
procedure greedy  
  begin 
    poolOfStocks=n; 
    completePt[0..n]; 
    completePt[0]=theBestStock; 
    minRisk=1; 
    for (size=1; size<portSize; size++) { 
      create currentPt[0..size]; 
      currentPt=completePt; 
      for (pos=size; pos<n; pos++) { 
        currentPt[size]=completePt[pos]; 
        evaluate currentPt; 
        if (currentPt risk < minRisk); 
        then minRisk=currentPt risk; 
             stock=currenPt[size]; 
       } 
       completePt[size]=stock; 
    } 
  end; 

3.4   The Simulated Annealing Algorithm 

The simulated annealing algorithm can be seen as an extended hill-climbing algorithm 
where it can escape from local optima. This algorithm takes an additional parameter 
named temperature that changes the probability of moving from one point of the 
search space to another [3][4]. This approach allows exploring new areas of the 
function being evaluated. 
procedure simulated annealing 
  begin 
    t=0; 
    initialize temperature T;  
    select portfolio P(t) at random; 
    evaluate portfolio P(t); 
    repeat 
      repeat 
        select portfolio P(t+1) at random 
          by modifying one stock; 
        if (P(t+1)Risk < P(t)Risk) 
          then P(t)=P(t+1); 
          else if rand[0,1)<exp{P(t+1)Risk–P(t)Risk/T} 
            then P(t)=P(t+1); 
      until (termination_condition) 
      T=g(T,t); 
      t=t+1; 
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    until (stop_criterion) 
  end; 

4   The Experiment at the Mexican Stock Exchange 

The Mexican Stock Exchange (MSE) has about 180 firms. The main purpose of the 
MSE is to provide the infrastructure and services to handle the processes of issuing, 
offering, and trading securities and instruments listed in the National Registry of 
Securities and Intermediaries.  

Companies that need funds for expansion can turn to the securities market in 
search of money by issuing securities (stocks) which are offered to the public. These 
stocks are traded (bought and sold) on the MSE, under a free market environment 
which offers equal opportunities for all participants. 

For this research we worked with a pool of 80 stocks and the data was from March 
1, 2001 to May 16, 2002. This represents 300 days of operation. The sample was 
restricted due to the size of the market, where some of the firms does not have enough 
days of trading.  

The following assumptions were taken: 
− Investors are risk averse. 
− Closing price is taken for each day. 
− Short selling is allowed 
− Dividends are not included 

 
Thirty nine portfolios were calculated for each algorithm: 

− Genetic algorithm. 
− Hill-climbing. 
− Random. 
− Greedy. 
− Simulated Annealing.  

Each portfolio was repeated 20 times (except by the greedy) and the result of the 
portfolio with the minimum risk was reported. The search space for each portfolio is 
shown in Table 2. 

Table 2. The search space 

Portfolio size Search space 
10 2.168E+25 
20 2.093E+55 
30 6.242E+86 
40 7.157E+118 

 
Figure 1 and Table 3 show the comparison of the heuristic algorithms evaluated. 

The performance of the algorithms based on the risk obtained by each portfolio size. 
The random and hillclimbing algorithm are the worst, then the genetic and simulated 
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annealing found good portfolios after they have 15 stocks. Finally, the greedy 
algorithm found the best portfolios. 

Table 3. The search space 

Portfolio size Greedy Random Hill-climbing Sim. Annealing Genetic 
5 0.003935 0.004385 0.004265 0.004193 0.004193 
10 0.003202 0.003640 0.003584 0.003269 0.003309 
15 0.002943 0.003401 0.003398 0.002988 0.002982 
20 0.002816 0.003142 0.003207 0.002836 0.002848 
30 0.002664 0.002942 0.002928 0.002685 0.002688 
35 0.002615 0.002829 0.002800 0.002627 0.002630 
40 0.002583 0.002747 0.002760 0.002596 0.002597 

 

 
Fig. 1. Comparison of the heuristic algorithms: portfolio size versus minimum risk performance 

 

5   Conclusions 

The random algorithm did perform as expected; the only way to reduce the risk by 
using this approach was by increasing the size of the portfolio, even though 
sometimes did not improve. The first unexpected result was the behavior of the hill-
climbing algorithm which found the portfolios quite similar to the random approach. 
This performance can be explained due to the fact that we considered only one 
neighbor to compete with the current portfolio. It is feasible to increase de overall 
performance by increasing the number of neighbors. 

The genetic algorithm as well as the simulated algorithm did a very similar 
performance. They found superior solutions even though the genetic was slowest 
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algorithm. On the other hand, the simulated annealing did require a heating process in 
order to find good portfolios. 

The greedy algorithm did find the best portfolios with the minimum CPU time for 
each portfolio size. However, the drawback of this approach is to find the portfolio 
seed which is needed to begin the search. 

The findings of this research are undoubtedly very surprising. The greedy 
algorithm which is very simple was able to find the portfolios with lowest risks. In 
addition, this algorithm offers the fastest result compare to the rest of algorithms. 
However, the key factor for the greedy algorithm to succeed is to identify the first 
couple of stocks of the portfolio. 

Finally, this approach can be very valuable for people with little knowledge of the 
stock market to select firms based on historical data, as well as and additional tool for 
people currently in the stock market to have a second source of information for the 
decision making process. 
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