A Multi-Agent Based Framework to Build
Intelligent Tutoring Systems

'Evandro de Barros Costa, 3Hyggo Oliveira de Almeida ,
'Klebson dos Santos Silva, and 2Angelo Perkusich

'Departamento de Tecnologia da Informagdo
Universidade Federal de Alagoas

Campus A. C. Simdes, Tab. do Martins, Maceio -AL — Brazil, Phone: +55
82 214-1401

ebc@fapeal.br

*Departamento de Engenharia Elétrica, *COPIN
Universidade Federal da Paraiba

Campina Grande -PB — Brazil

Abstract. Intelligent agent approaches have been applied to designing
and development of new ITS (Intelligent Tutoring Systems). However
the design of such systems is mainly based on ad-hoc approaches. In
this paper, we adopt a multi-agent approach which explores knowledge
engineering and an important feature of software engineering based on
design experiences: frameworks. Here, we describe a conceptual
framework for designing of Cooperative Intelligent Tutoring System
which adopts a multi-agent approach according to the model that we
have proposed.

Keywords: Intelligent Tutoring System, Multi-agent Systems, Software
Engineering, Distance Learning Environment

1. Introduction

The application of intelligent agents in many different, complex and dynamic
domains has increased over the last years. This is mainly due to the flexibility,
modularity, as well as the general applicability of this paradigm to a wide range of
complex problems [HAYE 99]. The inherent knowledge complexity of Intelligent
Tutoring Systems (ITS) is a key issue related to the increase in the use of the agent
paradigm for the design of such systems. However, in most of the cases such design is
carried on based on ad-hoc approaches.

In order to cope with such undesirable situation we introduce in this paper a
framework based on a domain knowledge modelling approach together with software
engineering disciplines to the design of multi-agent systems applications. Our focus is
on the design of ITS in a distance-learning environment. The research reported in this
paper in part of a larger project, named MathNet [COST 00], which is oriented to the
design and development of a distance-learning environment based on a multi-agent
approach. This project is based on the Mathema architecture [COS 96, COS 97, COS
98].

The major idea behind the MathNet system is to define and develop an
environment that provides effective means to involve human learners, a tutoring
system, and human teachers in productive cooperative interactions. In this paper our
focus is to introduce the framework established to develop the society of agents, with
emphasis on the design of a tutoring agent of this society. According to the proposed
architecture and the conceptual framework. This architecture has been used to derive
the abstract design of our framework. These tutoring agents are designed to offer
effectiveness in the interaction process involved in teaching-learning activities. They
provide personalised interactions with human learners working in the context of
distance education and mainly focused on problem solving activities.

The remainder of this paper is organised as follows. In Section 2 we present
the general architecture of the MathNet environment. We present our framework to
model domain knowledge and its consequence in building a society of tutoring agents.
Also, we define the Tutoring Agent architecture. A functional scenario to illustrate the
agent architecture is presented in Section 3. In Section 4 we present a conceptual
framework to model a Tutoring Agent. Finally, the conclusions are presented in
Section 5.

2. The MathNet Environment and its Society of Agents

The general architecture of MathNet has been defined around a cooperative multi-
agent ITS to provide human learners with cooperative learning. Learning is based on
problem solving activities and their consequences leading to the accomplishment of
other pedagogical functions, such as instruction, explanation, and hintsfor example. In

this context, we defined and developed a model for a computer-based cooperative
interactive learning environment based on a multi-agent approach [COST01]. From
an external view, the conceptual model of this system is organized as shown in Figure
1 and consists of five main entities: Human Learner, Human Teacher, Human Expert
Society (HES), Society of Artificial Tutoring Agents (SATA), as well as, an Interface
Agent representing three different interfaces modules to assure interactions between
theses entities: Learner Interface, Teacher Interface, HES Interface.

Fe-mmmaFe-mnf

HES Teacher Learner

4+ 4+ 4+ Interface
.]I] i

[.‘IJ ﬁ\ \‘\ ".‘ \ L1

1 e
| || SATA B '

)

I O b
ACOOoOoNOe
00000000000

Figure 1. General Architecture of MathNet

Learner: an active human agent who is interested in learning about certain domain
knowledge. For example, the domain of traditional music harmony [Cost

01].

Teacher: a human agent responsible for playing a facilitator role for promoting
assistance to the learner and interacts directly with him.

SATA (Society of Artificial Tutoring Agents): Responsible for assuring productive
interactions with Learner/Teacher. This society represents the multi-agent

ITS.

HES (Human Experts Society): works as sources of knowledge to the SATA, being
responsible for building and maintaining the tutoring agents from SATA.

Learner Interface: this interface allows the communication between the learner and
the system. All interactions are achieved through a browser.

Teacher Interface: Allow communication between the teacher and the system, and as
well as the learner interface, it is accomplished through a Web browser.

Expert Interface: Responsible for communication between HES and SATA.

Each one of these three categories of interface agents is defined to provide
both a microworld related to a given domain knowledge and a set of primitive
operators to manipulate the objects defined for this microworld, as for example a
turtle graphic in Logo [Pape 94]. Moreover, we establish two levels of languages.

2.1. Domain Knowledge Modelling
Considering the need for improvement and effectiveness in the interaction process

between the learner and the computer system, taking into account productive and
adaptive interactions, we have addressed some quality requirements towards the

design of a good learning environment. These quality requirements include searching
for good qualities in domain knowledge. On the other hand, a great part of
researching in Cooperative ITS deals with questions related to: (i) model of learners
which allow a Tutoring System to provide individualised actions and adaptive
interactions which focuses on building open and inspectable learner model [BULL
95], [PALV 95]. This leads to the possibility of learners to inspect the learner model,
which the system has made of him, having the opportunity to discuss and change the
results from this model. Other important question in ITS claims to (i) multiple
representation of domain knowledge [CUMM 91] and (iii) multiple pedagogical
strategies [GIRA 99]. Based on these requirements, we have first worked on the
improvement of the domain knowledge (DK), taking into account a trade-off between
its richness and its structure [COST 98].

We propose a particular way to consider multiple views on DK and then
providing it with a suitable organization in terms of computational structure. Then, a
particular DK is viewed as a set of interrelated sub-domains. Considering a goal-
oriented approach, in a teaching/learning situation, we define three dimensions for
DK: context, depth, and laterality. The first one, the context provides multiple
representations of knowledge by leading to different interpretations. The second one,
the depth, provides different levels of language refinement of DK. The last dimension,
the laterality, provides dependent knowledge that is, in this work, considered as
prerequisites and co-requisites of a particular DK. Once established this organization,
we define a DK decomposition into sub-domains and identify microworlds and
tutoring agents from this decomposition to approach DK. This organization is defined
according to the following scheme: DK can be associated with different contexts
(C,C,...C), where each Cj, with /<i < n, corresponds to different depth levels

defined by (D D, Z...,Dmi). Finally, to each pair (Cl-,Dij Y, 1<j < m, different

laterality (Lj [Liir)’ with > (0, are associated.

5
From the dimensional view of DK plus some considerations about the requirements
mentioned above, it is necessary to manage a big complexity in the involved
knowledge. To deal with this complexity and its consequences in the co-operative
interaction process, we have adopted multi-agent approach. This approach seems to
be natural to that end by offering various benefits from knowledge engineering. Also,
it offers suitable techniques apparatus and methods from the field of Distributed
Artificial Intelligence.

Then, we define a DK decomposition into various sub-domains d via the following
criteria: from each C; we define m sub-domains by the following pairs: (C;, D;;), (C;,
D.),.... {Cj Djy), with I<i <'n, and to each one of them we associate various
support sub-domains dfjk, 0<'k <t, responsible for knowledge in laterality dimension.
Therefore, we have defined two kinds of sub-domains: (i) from (C;, Dij) view we
define the sub-domain dy- and (ii) from the lateralities identified to each (C;
Di/> view, we define L knowledge support domains dm. Then, we can identify the
agents through the following criteria: to each sub-domain dy- we define an agent Agl,j

endowed with knowledge on this subdomain and on the microworld that we define
associated with this subdomain. The same procedure is used to each lateral support
domain dijt , defining a lateral support agent Agijt having specific knowledge on this

domain and each microworld defined. In short, we have three steps: (i) identify
subdomain, (ii) define a microworld associated with this subdomain, and then (iii)
define an agent to work on this subdomain and on this microworld. These agents are
connected by means of dependency relations. These relations allow the identification
of different interactions among agents.

2.2 The Society of Agents and Agent Architecture

The society is an open multi-agent system. It is made up of a collection of tutoring
agents that may, through established protocols [COST 96], co-operate among
themselves to achieve the teaching/learning activity to promote the learning of a
certain human learner. This society is designed to be open and dynamic in the sense
that it allows maintenance operations such as the entry and the exit of agents, besides
eventual modifications in the knowledge and in the inference mechanisms of an agent
[COST 99]. Any agent is an ITS that have the necessary knowledge to achieve
pedagogical tasks related to a particular domain. These agents are cognitive and
possess properties such as autonomy, goal-oriented, and social ability [FRAN 96].

The architecture of a tutoring agent is composed by three main components: a
tutoring system, a social system, and a distribution system. The tutoring system (7S)
controls the cooperative interactions between a tutoring agent and a human
learner/teacher. The social system (SS) coordinates the cooperative activities,
reflecting the social behaviour of a given agent. The distribution system (DS) executes
the sending/receiving of messages through the communication environment. In what
follows we the architecture and the functionality of a tutoring system as a component
of an agent is detailed. The interested reader may refer [COST 96, COST 97] for
details about the social and distribution systems.

3. Architecture and Functional Scenarios of Agent Systems

3.1. Tutoring System

The tutoring system (7S) is responsible for the cooperative interactions between a
tutoring agent and a human learner/teacher, in learning activities. This module is
composed by the components described below.

Mediator: Responsible for interacting with the Learner through the Interface Agent.
To do this it is formed by two mechanisms. One is responsible for interpreting the
actions from the Learner and then selecting a particular Reasoner. The other
mechanism maps a microworld concerning the domain knowledge.

Reasoners: This module is responsible for providing all the pedagogical functions. It
is composed by the submodules described in the following subsections.

Expert Module: This module is responsible for problem solving and explanations of
the solutions. The functionalities provided by the this module are played by the
following sub-modules.

Inference Engine : responsible for reasoning on two knowledge bases: Correct
Rules Base and Mal-Formed Rules Base (which contains rules about some kind of
misunderstanding of the domain).

Tutor Module: This module is responsible for directly interacting with the Learner
by selecting pedagogical resources from a curriculum structure defined over the
domain. For accomplish their functionalities it is divided into sub-modules, described
below.

Evaluator : Responsible for evaluate the learner answers.

Pedagogical Tasks Manager : Manages the pedagogical knowledge stored in the
database, choosing the resources (concepts, examples, exercises, etc) needed to the
learning of a certain learner.

Remediator: Responsible for choose the next action of the system according to the
learner cognitive diagnostic.

Learner Modelling Module: It is responsible for acquiring, maintaining, and
representing informations about individual learners. These informations are useful in
order to tutor module makes pedagogical decisions. This module implements a learner
model, which allow a Tutoring System to provide individualised actions and adaptive
interactions. It takes into account the possibility of learners to inspect the learner
model, which the system has made of him, having the opportunity to discuss and
change the results from this model. Also, it may implement a distributed diagnosis
mechanism based on the multi-agent platform available. For achieve their goals, it is
divided into submodules, described below.

Historical Manager : Responsible for organization of all pedagogical knowledge
viewed by the learner.

Profile Manager: Responsible for updating the learner level, considering the new
resources and his performance in problem solving.

Cognitive Diagnostic: Responsible for inferring the learner knowledge about a
specific domain previously taught for the system.

Inspection: Responsible for inspection mode. In other words, if the learner
disagree about his profile (controlled by the Profile Manager), then the system have to
show those exercises whose learner answers were wrong, and ask for the resolution of
similar problems.

Resource Bases: This module is responsible for providing the necessary knowledge
to be support to the reasoners.

Let us consider a scenario where the Tutoring System has the interaction control.
Once the Learner is connected to the system, the Tutor module starts an interaction
session with him by assuring his login.

Interface Agent |

6 H13 T T],
[a] -
i Presentation
1 1 121 (57 (0 /‘ Glediatoy Manager

Mediator

() 1)(2)4)(8 5]
Pedagoagical
MTasks
Reasoners anager
[D
Remediator

Tutor Module Evaluator

3,6°9,11
13,15

E F
Cognitive
Diagnostic Inspector ‘
Expert Module
£l I
Profile Historical
Manager Manager
G]

Learning Modelling Knowledge
1,47,10,14 Module Manager
Inference
@ Engine
O, [

Resource Bases |

K
D Resource Access Mahager

8 [LF——— [ﬂ-—-
Learner i
Bases Model Knowledge

‘ Social System ‘

Figure 2. Functional and Internal View of a Tutoring System Architecture

1 — The Tutor Module through the Pedagogical Tasks Manager (B) requests
Learner Modelling Module the next resource to be showed to the Learner.

2 — The Learner Modelling Module through the Profile Manager (G) recovers
information from the Learner Model (M), via Resource Access Manager (K), and
sends the informations to the Historical Manager (H). Then Historical Manager
(H) check whether the Learner covered, in the last pedagogical session, all the
resources contents established.

3 — Case the content has not been covered as a whole; Historical Manager (H)
returns the kind of resources remaining to the Pedagogical Tasks Manager (B).
Also, it returns a list of resources already presented to the Learner in order to
Pedagogical Tasks Manager (B) can generate the review content.

Otherwise, Historical Manager (H) sends the profile informations to the
Cognitive Diagnostic (E) and returns to Pedagogical Tasks Manager (B) a list of
resources before presented to the Learner, generating review content.

The Cognitive Diagnostic (E) processes the informations based on a set of rules
defined by the expert (HES) via Knowledge Manager (I), obtaining the current
learning level from Learner.

Following the sequence, Cognitive Diagnostic (E) sends this learning level to
Remediator (D). Finally, Remediator (D) sends back to Pedagogical Tasks

Manager (B) what kind of resources should be presented to the Learner based on his
level.

4 — Having the kind of resources, Pedagogical Tasks Manager (B) retrieve a
resource from Pedagogical Knowledge (N), through Resource Access Manager (K),
and check whether that resource has ever shown to the Learner, via Historical
Manager (H) (step 4°). Case the Learner has ever seen it, Pedagogical Tasks
Manager (B) retrieve other until find one that Learner never saw.

5 — Pedagogical Tasks Manager (B) sends that resource to the Presentation
Module (A) in the Mediator, that build a graphical component that contains the
resource and sends it to the Interface Agent (step 5°).

6 — Case the resource be a problem, the Learner must answer the problem
interacting with Interface Agent. Then, Interface Agent sends the answer to
Mediator that forwards it to Tutor Module (step 6”). Otherwise, goto step 1.

7 — Tutor Module, through Evaluator (C), check whether the answer is correct: it
sends to the Expert Module the informations about the problem and the Learner
answer.

8 — The Expert Module by means of the Inference Engine (J) works on
Knowledge Bases (L) through Resources Access Manager (K) in order to try
validating the solution.

Case the current agent do not be sufficient to validate the solution in an isolated
way, it tries to cooperate with other tutoring agents. This is done by the Inference
Engine (J) requesting Social System to searching for agents in SATA (step 8°).

9 — Once the solution is validated, Inference Engine (J) returns to Evaluator (C)
both learner performance and the path of prove followed by the system.

10 — The Evaluator (C) sends to Profile Manager (G) the performance obtained
in the evaluation process. It also sends to the Interface Agent, by means of Mediator
(using Presentation Module (A)), performance and path by which traced during the
prove which identified the performance.

11 — The Profile Manager (G) updates the Learner Model (K) through
Resources Access Manager (K) and requests Pedagogical Tasks Manager (B) to
show the Learner his current learning level and performance concerning the resources
worked (step 11°).

12 — Pedagogical Tasks Manager (B) requests Mediator (using Presentation
Module (A)) to show these informations via Interface Agent (step 12°). At this
moment, the Learner may discuss and change (by a negotiation mechanism through
try again to solution a given problem) the learner model interacting with Mediator.

13 — In case of learner disagreement, Mediator forwards the request to the
Pedagogical Tasks Manager (B).

14 - The Pedagogical Tasks Manager (B) requests inspection to the Learner
Modelling Module. This module, will verify through the Inspector (F) whether the
learner had some problem during problem solving over similar problems.

15 — Case the Inspector (F) find some occurrence of these problems, a new
resource will requested to Pedagogical Tasks Manager to be presented to the learner
as a second opportunity in problem solving process (similar problems). In case
agreement by the learner regarding to the Learner Model result, a new resource is
requested to the Learner Modelling Module. (goto step 1).

3.2. Social System

This module is composed by the following components.

Task Allocator: responsible for choosing agents to solve tasks received from
Tutor module. This module returns a set of pairs <T;, LA;>, where T; is a task and LA;
is a set of agents able to solve T;.

Social Knowledge Manager: contains the agent’s knowledge about other agents in
SATA.

Coordinator: controls the requests of cooperation to solve tasks, taking into
account possible dependency between them. In other words, the solution of a task T;
can depends of another task. So, this module is responsible to manager this situation.

Cooperation Manager: responsible for execute a cooperation. To do that, this
module contacts other agents in SATA using pre-defined interaction protocols.

Dialog: represents an instance of communication established with another agent.
This module maintains the context of the connections using in this communication.

The figure 3 illustrates the interaction between the social system components.

‘ Tutoring System |

&)
Social System
L et
g 3 -
[
| Coordinator ‘
1G] 1G] 1631
Cooperation Cooperation Cooperation
Manager 1 Manager 2 . ‘ Manager n
& & Ie))
| Dialog ” Dialog | | Dialog ‘

Figure 3: Functional and Internal View of an Social System Architecture

1- Task Allocator receives a set of tasks.

2, 3- Task Allocator consults the Social Knowledge during process of search
agents able to solve the tasks received previously

4, 5 — Coordinator receives the set of pairs <T;, LA;>. It then controls the creation
of Cooperation Manager processes.

6- Each one of the cooperation processes requests help to other agents in SATA.
An instance of module Dialog will be created for each one of agents.

4. Conceptual Framework

We introduce a framework to build ITS based on the identification of the common
characteristics observed in applications developed in the context of MathNet
environment [COST 01] and on its architecture. We present in this paper a high-level
description of such framework. Observe in the class diagram shown in Figure 6 that
classes with stereotype abstract define the hooks of the framework. Due to space
constraints we are not detailing these hooks in this paper. The application of the
framework is based on the composition of the functionalities of the modules of an
agent. Therefore, new functionalities can be added by inserting new modules in such a
way that they do not cause problems in the execution of the modules already defined.
Moreover, these modules will be compatible with and will be part of the system as a
whole. In what follows we have done some considerations about the modules in the
architecture. The Mediator controls all messages exchanged between reasoners. The
request and reply messages are sent to the mediator, and then forwarded to the
suitable reasoner. Based on the architecture already presented, we define fixed points
in reuse of this architecture for design new ITS’s. The definition of agent (section 2.3)
should be remained, then, tutoring, social and distribution systems represent fixed
points in the framework. Moreover, their internal components are also fixed in terms
of funcionality, but the implementation of this funcionalities is not fixed. This is
possible due to Hooks placed in personalization points on the functional components
of the framework (social, distribution and reasoner components). Here, we are not
interested in presenting this hooks with low-level details concerning design phase
ready to derive implementation aspects. An example of the use of hooks is shown in
Figure 5, where a component may be any functional component in the proposed
framework or an abstract component, in case of additional components:

[abstract o
* Reasoner
Companant

'S
1 1) | < abstract =
f Tutoring System A

| * Reasoner

Expuort Mol

Leeaarmirag Mo
et

1 — —
|~ |) { Pemmcal]
o ‘ A1 emource Aceess | | L Knowiedge

1

| SATA | |
1

> 1 megator |

'| Resource Base }'
asas
socil Systen ——
1| 3 " Lean
Akttt * 1 (indel
Distriution - —_—
« O v Bystem | Fabslratis
Compontt) Sorial e
7 Companent
Commmrication [[[
Manager T
‘social “ Task

(S——
Manager | Memager |

Allocator

numq|

Figure 5. Class diagram of the framework

In the diagram illustrated in Figure 6, abstract classes (with abstract stereotype) define
the default behaviour of the functional components and represent the hooks of

framework. The functionalities are preserved for the entire because the components
behaviour are also preserved. New components may be added, or changed for others
with for example better performance in runtime, therefore there is no need to stop the
execution on an agent in order to change components.

System
<abstract> add » commponents[]
Component ~

~ addComponent(Component)
~

J/defsult methods
exchangeMessage();

...and add ta 5 system (kutaring, social or Iﬁ
. distribution).
Iihook.
abstract requestService();

MyComponent
— — <‘ The funcionality of existing components may be changed j

- Lsing this process, In this case, Component will be a
s requestService() concret class that represents an existing component.

abstract companent and implement the
funcionality of this new camponent. .

If i need & new compnnent, i wil extend 'T

Figure 6. An example of hook

5. Conclusion and Future Work

In this paper we have presented a framework for building a society of tutoring agents
from a domain knowledge model. Based on the architecture defined to a tutoring
agent, a framework for designing a tutoring system from a tutoring agent has been
defined. The first results from this framework have been used in the development of
four multi-agent ITS prototypes. These prototypes have been developed and
experimented in domains such as Musical Harmony [COST 01], Information
Structure [FARI 00], Algebra and Classical Logic [FLEM 97].

Further research includes extending these frameworks by defining them in terms of
implementation approach. Moreover, we have been working on the definition of a
methodology based on the conceptual framework. We have worked aiming the three
phases: analysis, design, and implementation.

References

[BULL 95] Bull, S.; Pain, H. “Did I say what I think I said, and do you agree with me?”:
Inspecting and questioning the student model. Proceedings of AI-ED 95 - World Conference
on Artificial Intelligence in Education, Washington, DC; August 16-19, 1995, pp. 501-508.

[COST 95] Costa, E.B.; Lopes, M.A.; Ferneda, “E. MATHEMA: A Learning Environment
Based on a Multi-Agent Architecture”. In J. Wainer and A. Carvalho, editors, Proc. of 12th
Brazilian Symposium on Artificial Intelligence, Volume 991 of Lecture Notes in Artificial
Intelligence, pages 141-150. Springer-Verlag, Campinas, Brazil, October 1995.

[COST 96] Costa, E.B., Perkusich, A. “Modelling the Cooperative Interactions in a
Teaching/Learning Situation”. In Proceedings of Third International Conference on
Intelligent Tutoring Systems - ITS 96, Montreal, Canada, June, 1996.

[COST 97] Costa, E.B. “Um Modelo de Ambiente Interativo de Aprendizagem Baseado numa
Arquitetura Multi-agents”. Tese de Doutorado. UFPB, Campina Grande-PB, 1997.

[COST 98] Costa, E.B.; Perkusich, A.; Ferneda, E. “From a Tridimensional view of Domain
Knowledge to Multi-agent Tutoring System”. In F. M. De Oliveira, editor, Proc. of 14th
Brazilian Symposium on Artificial Intelligence, Volume 991 of Lecture Notes in Artificial
Intelligence, LNAI 1515, pages 61-72. Springer-Verlag, Porto Alegre, RS, Brazil,
November 1998.

[COST 00] Costa, E.B. “MathNet: Uma Abordagem via Sistemas Multi-Agents para
Concepcdo ¢ Realizagdo de Ambientes Interativos de Aprendizagem Cooperativa Assistidos
por Computador. Revista de Informatica na Educacdo da Sociedade Brasileira de
Informatica na Educagdo. SBIE, Abril de 2000.

[COST 01] Costa, E. B., et alli. “SHART-Web-Um Sistema Tutor Multi-agents em Harmonia
na Web”. SBIE"2001: Workshop on Multi-agent Interactive Learning Environment, Vitéria,
Espirito Santo.

[CUMM 91] Cumming, G.; Self, J. “Learner Modelling in Collaborative Intelligent Educational
Systems”. In: Peter Goodyear (ed.), Teaching Knowledge and Intelligent Tutoring,
Norwood, N.J.: Ablex, 1991.

[FARI 00] Faria, T. de F. e Bittencourt, G. “Um ambiente interativo multi-agents para o ensino
de estrutura da informagdo”, XI Simpodsio Brasileiro de Informatica na Educagio
(SBIE'2000), Maceio6, AL, 8 a 10 de novembro de 2000.

[FLEM 98] Flemming, E., “Um Sistema Tutor Distribuido no Dominio da Logica”,
Universidade Fedegal de S,anta Catarina, CURSO DE POS-GRADUACAO EM
ENGENHARIA ELETRICA, Area de concentragao: Sistemas de Informagao, 29 de abril de
1998.

[FRAN 96] Franklin, S.; Graesser, A. “Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents”. Proceedings of the Third International Workshop on Agent Theories,
Architectures, and Languages, Springer-Verlag, 1996.

[GIRA 99] Giraffa, L. M. M. ; “Uma arquitetura de tutor utilizando estados mentais”. Tese de
Doutorado, Universidade Federal do Rio Grande do Sul, 1999.

[HAYE 99] Hayes, C. C.; “Agents in a Nutshell — A very Brief Introduction”. In IEEE
Transactions on Knowledge and Data Engineering, Vol. 11, n. 1, January/February 1999.

[PAIV 95] Paiva, A., Self, J., Hartley, R., “Externalising Learner Models”. In: Proceedings of
AI-ED 95 - World Conference on Artificial Intelligence in Education, Washington, DC;
August 16-19, 1995, pp. 509-516.

[PAPE 94] Papert, S.: Mindstorms: “Children, Computers, and Powerful Ideas”. Basic Books.
New York, 1994.

