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Morphological Associative Memories (MAM) are a construct
similar to Hop�eld Associative Memories de�ned on the alge-
braic system. The MAM posses excelent recall properties for undistorted
patterns. However they suffer from the sensitivity to speci�c noise models,
that can be characterized as erosive and dilatative noise. We �nd that this
sensitivity may be made of use in the task of Endmember determination
for the Spectral Unmixing of Hyperespectral Images.

Manuel Graña , Bogdan Raducanu , Peter Sussner , and Gerhard Ritter

Passive remote sensing evolution has produced measurement instruments with
ever growing spectral bread and resolution. Multispectral sensing allows the clas-
si�cation of pixels, however the recognition that pixels of interest are frequently
a combination of material has introduced the need to quantitatively decompose
the pixel spectrum into their constituent material spectra. Hyperespectral sen-
sor measurements in hundreds of spectral bands allow to perform such �spectral
unmixing� [9]. The reasons for the mixture of several spectra in a sigle pixels
are (1) the spatial resolution of the sensor implies that different land covers are
included in the area whose radiance measurement results in an image pixel, and
(2) distinct materials are intimately mixed (e.g.: a beach). The second situation
is independent of the sensor spatial resolution and produces non-linear mixtures,
which are difficult to analyze. The �rst situation produces mixtures which, often,
can be adequately modelled by a linear mixing model. In this paper we assume
that the linear model is correct, and we present an approach to the detection of
endmembers for spectral unmixing in hyperespectral image processing through
the application of Morphological Associative Memories.

Research efforts trying to introduce elements of mathematical morphology in
the domain of the Arti�cial Neural Networks involve a small community but are
sustained in time. In short de�nition Morphological Neural Networks are those
that involve somehow the maximum and/or minimum (supremum and in�mum)
operators. Some fuzzy approaches are included in this de�nition. The kind of
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2 The linear mixing model
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Morphological Neural Networks range from patter classi�ers [2], [12], [20], [28],
target detection [5], [6], [14], [27], to associative memories for image restoration
[16], [17], [18].

The basis for the learning algorithms is the computation of the gradient of
functions that involve max/min operators [13],[27], [28], [29]. An antecedent for
these works is the adaptive construction of morphological �lters [1], [21]. Some
authors [12], [13] propose the composition of the network with a mixture of
morphological and linear operators in the nodes. The Morphological Associative
Memories (MAM) [16], [17], [18] are the morphological couterpart of the Correla-
tion Associative Memories (CAM) [10] and the well known Hop�eld Associative
Memories [7]. Like the CAM, MAM are constructed as correlation matrices but
with the substitution of the conventional matrix product by a Min or Max ma-
trix product from Image Algebra [19]. Dual constructions can be made using the
dual Min and Max operators. We propose a procedure that involves the appli-
cation of MAM to detect new patterns, but the training proceeds on line adding
the patterns to the already identi�ed patterns,

The structure of the paper is as follows: In section 2 we review the de�nition
of the linear mixing model. Section 3 provides a review of basic results of MAM�s.
Section 4 gives our algorithm of endmember selection for remote sensing hyper-
espectral images. Section 5 presents some experimental results of the proposed
algorithm. Section 6 gives our conclusions and directions of future work.

The linear mixing model can be expressed as follows:

(1)

where is the -dimension received pixel spectrum vector, is the
matrix whose columns are the -dimension endmembers is the

-dimension fractional abundance vector, and is the -dimension additive
observation noise vector. The linear mixing model is subjected to two constraints
on the abundances. First, to be physically meaningfull , all abundances must be
non-negative Second, to account for the entire composition
the abundances must be fully additive

Often the process of spectral unmixing is performed on transformations of
the data intended to reduce the computational burden [9] or to enhance some
properties of the data [8]. We do not apply any dimension reduction transfor-
mation here. The task of endmember determination is the focus of this paper.
In an already classical paper [4], Craig starts with the observation that the scat-
ter plots of remotely sensed data are tear shaped or pyramidal, if two or three
spectral bands are considered. The apex lies in the so-called dark point. The
endmember detection becomes the search for non-orthogonal planes that enclose
the data forming a minimum volume simplex, hence the name of the method.
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3 Morphological Associative Memories

Besides its computational cost the method requires the prespeci�cation of the
number of endmenbers. Another step to the automatic endmember detection is
the Conical Analysis method proposed in [8] and applied to target detection.
The extreme points in the data after a Principal Component transform are the
searched for endmember spectra. The method is geometrically similar to the
Craig´s one but does not require costly linear programming. It also requires the
prespeci�cation of the desired number of endmembers. Another approach is the
modelling by Markov Random Fields and the detection of spatially consistent
regions whose spectra will be assumed as endmembers [15]. A quite standard
approach to endmember determination is the use of standard libreries of spectra
[9]. This approach requires great expertise and a prori knowledge of the data. Fi-
nally, there are interactive exploration algorithms that are supported by speci�c
software packages.

Once the endmembers have been determined the last task is the computation
of the inversion that gives the fractional abundance and, therefore, the spectral
unmixing. The simplest approach is the unconstrained least squared error esti-
mation given by:

(2)

The abundances that result from this computation do not ful�ll the non-negative
and full aditivity conditions. It is possible to enforce each condition separately,
but rather difficult to enforce both simultaneously [9]. As our aim is to test an
endmember determination procedure, therfore we will use unconstrained estima-
tion (2) to compute the abundance images. We will show intensity scaled and
shifted images of the abundances to evaluate our results.

The work on Morphological Associative Memories stems from the consideration
of an algebraic lattice structure as the alternative to the algebraic

framework for the de�nition of Neural Networks computation [16] [17].
The operators and denote, respectively, the discrete and operators
(resp. and in a continuous setting). The approach is termed morpholog-
ical neural networks because and correspond to the morphological dilation
and erosion operators, respectively. Given a set of input/output pairs of pattern

, an heteroassociative neural network based on

the pattern�s crosscorrelation [10], [7] is built up as Mimick-
ing this construction procedure [16], [17] propose the following constructions of
HMM�s:

(3)
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Perfect recall of HMM. The matrix is -perfect if and only

if the matrix contains a zero at each row. Similarly,

the matrix is -perfect if and only if the matrix

contains a zero at each row.

Perfect recall of AMM. Both erosive and dilative AMM�s have the
perfect recall property: , for any .

robust

Given patterns , the equality holds when the
noise affecting the pattern is erosive and the following relation holds

Similarly, the equality

holds when the noise affecting the pattern is dilative and the following

relation holds: .

where is any of the or operators Here and denote the and
matrix product, respectively de�ned as follows:

(4)

(5)

It follows that the weight matrices and are lower and upper bounds
of the max and min matrix products and
therefore the following bounds on the output patterns hold

that can be rewritten A matrix
is a -perfect ( -perfect) memory for if (

). It can be proven that if and are -perfect and -perfect memories,
resp., for then and are also -perfect and -perfect, resp.:

. Therefore Conditions of
perfect recall of the stored patterns are given by the following theorems proved
in [16],[17]:

These results hold when we try to recover the output patterns from the
noise-free input pattern. To take into account the noise, a special de�nition of
the kinds of noise affecting the input patterns is needed. Let it be a noisy
version of If then is an eroded version of alternatively we
say that is subjected to erosive noise. If then is a dilated version
of alternatively we say that is subjected to dilative noise. Morphological
memories are very sensitive to these kinds of noise. The conditions of
perfect recall for , i.e. the retrieval of given a noisy copy , are given
in [16], [17]. The dilative HMM is robust against controlled erosions of the
input patterns while the erosive HMM is robust against controlled dilations
of the input patterns. At present we are more concerned by the conditions for
perfect recall of noisy patterns of AMM:
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Morphological independence. Given a set of pattern vectors
, a pattern vector is said to be morphologically independent of

in the erosive sense if and morphologically independent of
in the dilative sense if The set of pattern vectors is

said to be morphologically independent in either sense when all the patterns are
morphologically indenpendent of the remaining patterns in the set.

Remark 1.

The AMM will fail in the case of the noise being a mixture of erosive and
dilative noise. To obtain general robutness the kernel method has been proposed
[16], [18], [22]. In order to characterize kernels and to obtain a constructive
de�nition, the notion of morphological independence and strong morphological
independence is introduced in [18], here we distinguish erosive and dilative ver-
sions of this de�nition:

The strong morphological independence is introduced in [18] to give a con-
struction for minimal kernels with maximal noise robustness. For binary valued
vectors, morphological independence and strong morphological independence are
equivalent. For the current application we want to use AMM as detectors of the
set extreme points, to obtain a rough approximation of the minimal simplex that
covers the data points. We need to establish �rst a simple fact in the following
remark:

Given a set of pattern vectors and the erosive
and dilatative memories constructed from it. Given a test pattern
if is morphologically independent of in the erosive sense, then

Also, if is morphologically independent of in the dilative sense, then

The endmembers that we are searching for are the corners of a high di-
mensional box centered at the origin of the space (we will perform a simple
correction of the mean of the data). They are morphologically independent vec-
tors both in the erosive and dilative senses, and they enclose the remaining
vectors. The endmember detection process would apply the erosive and dila-
tive AMM�s constructed from the already detected endmembers to detect the
new ones as suggested by the previous remark. Working with integer valued
vectors, a desirable property is that vectors already inside the box de�ned by
the endmembers would be detected as such. However, given a set of pattern
vectors and the erosive and dilatative memories
constructed from it. If a test pattern for some would give

Also, if the test pattern for some then
Therefore, working with integer valued patterns the detection

of the morphologically independent patterns would be impossible. However, if
we consider the binary vectors obtained as the sign of the vector components,
then morphological independence would be detected as suggested by the above
remark. Let us denote by the expression the construction of the binary
vector if if
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4 The detection of spectral endmembers
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Although we have no formal proof of the perfect recall of the HMM when the input
patterns are morphologically independent, it is very likely and �ts nicely to use the
HMM as the endmember identi�er. In practice, we search the set directly

The endmembers of a given hyperespectral image under the linear mixture as-
sumption correspond to the vertices of the minimal simplex that encloses the
data points. The region of the space enclosed by a set of vectors simultaneously
morphologically independent in both erosive and dilative senses is a high dimen-
sional box. Therefore, the search for the extremes in the morphological sense
gives the high dimensional box that best approaches the minimal simplex that
encloses the data points. The approach in this paper is to use AMM�s as the
mechanism to evaluate the morphological independence condition. Let us de-
note the hyperspectral image, and the
vectors of the mean and standard deviations of each band computed over the
image, the noise correction factor and the set of endmembers discovered.
We perform �rst a correction of the mean of the data, so that it will be centered
about the origin, to ease the detection of the directions where the extreme points
lye. The standard deviation of the data at each band is taken as an estimation of
the additive noise standard deviation. To test the morphological independence
we apply the AMM to the pixel spectra after the addition and substraction
of This procedure is intended to avoid the detection of small �uctuations
around the mean as endmember directions. The con�dence level controls the
amount of �exibility in the discovering of new endmembers.

The steps in the procedure are the following:

1. Compute the zero mean image .
2. Initialize the set of endmembers with a pixel spectra randomly

picked from the image. Initialize the set of morphologically independent bi-
nary signatures

3. Construct the AMM�s based on the morphologically independent binary sig-
natures: and De�ne orthogonal binary codes for the end-
members and construct the identi�cation HMM :

4. For each pixel
(a) compute the vector of the signs of the Gaussian noise corrections

and
(b) compute
(c) compute
(d) if and then is a new endmember to be added to

go to step 3 and resume the exploration of the image.
(e) if and the pixel spectral signature is more extreme

than the stored endmember, then substitute with
(f) if and the pixel is more extreme than the stored

endmember, then substitute with
5. The �nal set of endmembers is the set of original spectral signatures

of the pixels selected as members of
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5 Experimental results

The spectra used for this work correspond to the Indian Pines 1992 image ob-
tained by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) de-
veloped by NASA JPL which has 224 contiguous spectral channels covering a
spectral region form 0.4 to 2.5 mm in 10 nm steps. It is a 145 by 145 pixel image
with 220 spectral bands that contains a distribution of two-thirds of agricul-
tural land and one-third of forest and other elements (two highways, a rail line
and some houses and smaller roads). The ground truth available for this image
[11] designates 16 mutually exclusive classes of land cover. Examples of studies
about the application of supervised classi�cation algorithms to this image are
[3], [24], [25], [26]. Figure 1 shows the ground truth as identi�ed in [11], [25].
Many speci�c charateristics are hidden in the background class. The distribu-
tion of the cover classes was drawn approximately, so there is a non neglible
amount of erronously labeled pixels in the ground truth. The results of the su-
pervised classi�cation show a great deal of details [3], [25]. As we do not have
the permission to reproduce these results we present in �gure 2 some false color
renderings based on different band selections. These images highligh some spa-
tial distributions of land cover that are consistently identi�ed by diverse works
on supervised classi�cation.

We have applied our method to the endmember detection starting with dif-
ferent initializations of the endmember set. In all cases the number of detected
endmembers was in the range from 8 up to 15. The control parameter was
set at values between 2 and 1.6, the lower the values the greater the number of
endmember detected. The image pixels were processed once. As the endmember
detection is an unsupervised process, although we have a ground truth we don�t
have any proper performance measure, unlike the supervised classi�cation case.
The validation of the quality of the results must be by observation of the re-
sulting abundance images. In these images white correspond to high values and
black to low values (may be negative). We present in �gure 4 abundance images
resulting from an execution of the algorithm.

For instance, the endmember #1 seems to be a good detector for oats, whose
ground truth spatial situation can be appreciated in �gure 1. Abundance image
1 highlights the ground truth patch, but also several straight lines that may cor-
respond to borders between land lots and to the side trees of roads. Endmember
#5 appears to be specialized in cultivated lands, it highlights the oats but also
the other crops, it gives very dark response on the woods while endmember #7
is a good detector of woods and grass, according to the ground truth and the
results of supervised classi�cation [25]. If we take into account that the data was
gathered when the crops were very low, a feasible interpretation of the results
is that endmember #5 is detecting the soil, while endmember #7 detects the
green cover of the woods and the grass. This discussion is aimed to show that
the endmembers detected may have some physical meaning and some value in
the analysis and interpretation of the image.



Fig. 1.

Fig. 2.

Fig. 3.
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The Indian Pines image ground truth

Some false color renderings of the image based on different selections of the bands
that correspond to the RGB.

Abundance images computed using the endmembers in �gure 3.
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6 Conclusions and Further Work
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We have proposed an algorithm for endmember detection in hyperespectral im-
ages based on the noise sensitivity of the Autoassociative Morphological Mem-
ories (AMM). The procedure does not need the a priori setting of the number
of endmembers. Its �exibility in the discovering of endmembers is controlled by
the amount of noise correction introduced in the pixel spectral signature. Exper-
imental results on the Indian Pines image have demonstrated that the procedure
gives a reasonable number of endmembers with little tuning of the control pa-
rameter ( ), and that these endmembers have physical meaning and may serve
for the analysis of the image.

Further work must be addressed to experimentation with other multi and
hyperspectral images to further validate the approach. Also, research into the
realization of learning processes on morphological neural networks for this task
is a promising research venue. It involves the shift from binary clasi�cation as
performed by the min/max networks into morphological category representative
detection (clustering).
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