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Abstract. Three different machine learning algorithms applied to 3D object
modeling are compared. The methods considered, (Support Vector Machine,
Growing Grid and Kohonen feature Map) were compared in their capacity of
modeling the surface of severa synthetic and experimental 3D objects. The
preliminary experimental results show that with slight modifications these
learning algorithms can be very well adapted to the task of object modeling.
In particular the Support Vector Machine Kernel method seems to be a very
promising tool.

1 Introduction

Object modeling is a very important technique of computer graphics and has been
object of study for more than two decades. The technique has found a broad range of
applications, from computer-aided design and computer drawing to image anaysis
and computer animation. In the literature several approaches to object modeling can
be found. One approach is to look for a rigid model that best fits the data set, an
alternate one is to deform a model to fit the data. The later ones are known as dy-
namically deformable models. They were first introduced by Kass, Witkin and Ter-
zopoulos [8] and have created much interest since then because of their clay like
behavior. A complete survey can be found in [7].

To achieve 3D object modeling, it is desirable that the applied method show a
great flexibility in terms of shape and topology representation capacity. A deformable
model with this characteristic is the smplex mesh developed by Delingette [4][5]. It
is a non-parametric deformable model, that can take virtually any shape of any to-
pology with a very low computational cost as compared to other deformable models
with the same flexibility. It is well known that several machine learning algorithms
posses the ability to induce efficiently, in a more or less automatic manner, arbitrary
surfaces and topology preserving mappings on arbitrary dimensional noisy data. The
proposed approach to 3D object modeling takes advantage of this low cost surface
representation capacity inherent to these learning algorithms.



In this paper we describe the application of the Support Vector Kernel Method
(SVM) [3], the Kohonen Self-Organizing Feature Maps [9] and the Growing Grid
[6] machine learning algorithms to model objects from data sets that contain infor-
mation from one or more 3D objects. In general the application of the algorithms
start with a cloud of 3D data points and no a priori information regarding the shape
or topology of the object or objects in the scene. These data points are applied to the
learning algorithms, that with simple modifications on the learning rules, generate
adaptively a surface adjusted to the surface points. In case of the Kohonen Feature
Map and the Growing Grid a spherical network is randomly initialized in the inte-
rior of the cloud of points. Then the learning rule is applied and the network deforms
and grows (Growing Grid) until it reaches stability at the surface of the cloud of
points. In case of the Support Vector Kernel Method the data points are mapped to a
high dimensional feature space, induced by a Gaussian kernel, where support vectors
are used to define a sphere enclosing them. The boundary of the sphere formsin data
space (3D) a set of closed surfaces containing the cloud of points. As the width pa-
rameter of the Gaussian kernel is increased, these surfaces fit the data more tightly
and splitting of surfaces can occur alowing the modeling of several objects in the
scene. At the end of each of these processes we will have a model for each object.

The organization of the paper is as follows: in the second section, an overview of
the applied learning machine methods and their modifications for 3D object model-
ing are discussed. In the third section experimental results are presented and finally
in the fourth section the conclusions and further work are described.

2 Learning Machine Methods

3D Object modeling is an ill-defined problem for which there exist numerous meth-
ods [2],[7],[10],[12]. In the present approach, learning machine methods that pro-
duce data clustering are applied to surface modeling. These clustering methods can
be based on parametric models or can be non-parametric. Parametric algorithms are
usualy limited in their expressive power, i.e. a certain cluster structure is assumed.
In this work experiments of surface modeling with two parametric (Kohonen Feature
Map and Growing Grid) and a non-parametric (SVM Kernel Method) clustering
algorithms are presented and compared. In what follows a brief discussion of each
learning method is made.

2.1 Support Vector Kernel Method

The idea behind the application of the support vector formalism [3] to object model-
ing follows the SVM clustering method in [1]. Let {x} be a data-set of N 3D points
representing the object in the scene. Using a nonlinear transformation f from the
input 3D space to some high dimensional feature-space, we look for the smallest
enclosing sphere of radius R, described by the constraints:
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Where use is made of the Euclidean norm and a is the center of the sphere. Soft
constraints are incorporated by adding slack variables x;
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This problem is solved in the formalism of Lagrange by introducing and minimizing
the Lagrangian
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Where m b are positive Lagrange multipliers, C is a constant and the last term is a
penalty term.

The stationarity of the Lagrangean with respect to R and x; leads to the following
relations:
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The Karush, Kuhn and Tucker complementary conditions result in:
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From these relations it is easy to verify that a point x; with x; > 0 is outside the
sphere in feature space, such points have m; =0 and b; = C. A point with x; = 0 is
inside or on the surface of the sphere in feature space. To be on the surface it must
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have b; not equal to zero. Points with 0 < b; < C will be referred to as Support
Vectors.
The above relations allow the derivation of the Wolf dual of the Lagrangian:

W =& bf (x; ) (x;) - & bib;f (x)f (x;) (©)

and the problem is solved by maximizing the dual. The dot products f (). f (x) can
be conveniently replaced by a suitable Mercer kernel  K(x; ,x;) in this way the Wolf
dual can be rewritten as

W =& bK(x;,x)- & bib;K(x,x;) (10)
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The Lagrange multipliers b; are obtained by maximizing this expression. This is
computationally done by the application of the SMO algorithm [11].
In the approach to object modeling with SVM the Gaussian kernel is employed

K(xi ,Xj)=exp§? qHXi ] ijg (11)

In feature space the square of the distance of each point to the center of the sphere
is

R2(x)=f (x)- a|? (12)
The radius of the sphereis
R={R(x; )| x; isa support vector} (13)

In practice the average over all support vectors is taken. The surface of the clouds
of pointsin 3D data spaceis given by the set:

{x| R(x)=R} (14)



2.2 Kohonen Feature Map

The Kohonen Feature Map [9] is an unsupervised learning machine that typically
consists of one layer of neurons in a network of constrained topology. In its learning
phase the weight vectors are randomly initialized. During learning, for every input
vector the Best Matching Unit (BMU) is determined. The BMU and a number of
units in a neighborhood of the BMU, in the constrained topological network, are
adjusted in such a way that the weight vectors of the units resemble the input vector
more closely. The units surrounding the BMU are adjusted less strongly, according
to the distance they have to the BMU.
The weight vectors wi(t) are adjusted by applying the Kohonen Learning Rule:

w; (t+1)=w; (t)+e(t)F ;i (t){x(t)- w; (t)) (15)

where the learning rate e(t) is a linear time decreasing function, x(t) is the input
vector at timet, and F;(t) is the neighborhood function with the form:
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Here | isthe position of the BMU in the topological network and i the position of a
unit in its neighborhood. The width parameter s(t) is also a linear time decreasing
function. It can be noted that since the learning rate and the width parameter both
decrease in time the adjustments made on the weight vectors become smaller as the
training progresses. On a more abstract level, this means that the map will become
more stable in the later stages of the training.

It can be seen that the result of learning is that the weight vectors of the units re-
semble the training vectors. In this way the Kohonen Feature Map produces a clus-
tering of the n-dimensional input vectors onto the topological network.

In order to model the surface of the input data points, two modifications to the
Kohonen Feature Map are introduced: (a) The constrained topological network cho-
sen is a spherical grid. (b) the weight vectors of the BMU and its neighbors are actu-
alized only if the input vector is external to the actual spherical grid.

The implementation used three different rates to decrease parameters e and s: a
first rapid decreasing stage a middle slower but longer stage and a final short fine
tuning stage.



2.3 Growing Grid Method

This model [6] is an enhancement of the feature map. The main difference is that the
initially constrained network topology grows during the learning process. The initial
architecture of the units is a constrained topological network with a small number of
units. A series of adaptation steps, similar to the Kohonen learning rule, are executed
in order to update the weight vectors of the units and to gather local error informa-
tion at each unit. This error information is used to decide where to insert new units.
A new unit is aways inserted by splitting the longest edge connection emanating
from the unit with maximum accumulated error. In doing this, additional units and
edges are inserted such that the resulting topological structure of the network is con-
served.

The implemented process involves three different phases: an initial phase where
the number of units is held constant allowing the grid to stretch, a phase where new
units are inserted and the grid grows, and finally afine tuning phase.

3. Experimental Results

The learning algorithms for modeling are applied on several synthetic objects repre-
sented in the form of clouds of 3000 points each obtained from the application of a
3D lemniscate with 4, 5 and 6 foci. The initial and final parameters used for the

Kohonen Feature Map were: €= 0.5, & = 0.0001, So= 4, S;= 0.01, with atotal 10°

iterations. For the Growing Grid: €= 0.08, &= 0.05, a constant S = 0.7, the number
of iterationsis distributed as: 500 * grid size in the stretching phase; 500 * grid size
in the growing phase; and 200 * grid size iterations for fine tuning. The parameters
in the SYM algorithrm are C = 1.0 and q = 2 (Fig. 1 and Fig. 3), g=4 (Fig. 2) and q
= 0.00083 (Fig. 4).

In figure 1 the original surface (5 foci lemniscate) and the surface models result-
ing from the application of the three learning methods (a) Kohonen Feature Map (b)
Growing Grid and (c) SVM algorithms are shown. The Kohonen Map consisted on a
spherical topological network with 182 units randomly initialized in the interior of
the cloud of points. The Growing Grid was also a spherical network with 6 initial
units randomly initialized in the interior of the cloud, the network was grown up 162
units. The SYM model was constructed with 49 support vectors.

It can be appreciated that the three algorithms achieve a reasonable modeling of
the original object. The best results are produced by the Growing Grid and SVM
methods.
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Fig. 1. Results of the three machine learning methods in the modeling of a surface from a
solid generated by a 5 foci lemniscate. (@) Kohonen Feature Map (b) Growing Grid and (c)
SVM Kernel method.

In figure 2 the original surface (6 foci lemniscate) and the surface models result-
ing from de application of the three learning methods (a) Kohonen Feature Map (b)
Growing Grid and (c) SVM algorithms are shown. The Kohonen Map consisted on a
spherical topological network with 266 units randomly initialized in the interior of
the cloud of points. The Growing Grid was aso a spherical network with 6 initial
units randomly initialized in the interior of the cloud the network and grown up to
338 units. The SVM model was constructed with 77 support vectors.
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Fig. 2. Results of the three machine learning methods in the modeling of a surface from a
solid generated by a 6 foci lemniscate. (@) Kohonen Feature Map (b) Growing Grid and (c)
SVM Kernel method.



It can be appreciated that again in this experiment the three algorithms achieve a
reasonable modeling of the original object. The best results are produced by the
Growing Grid and SVM methods.

In figure 3 the original surface (4 foci lemniscate) and the surface models result-
ing from the application of the two learning methods (a) Growing Grid and (b) SVM
algorithms are shown. For this case the Growing Grid was a spherical network with
6 initial units randomly initialized in the interior of the cloud of points. The network
was grown up 134 units. The SYM model was constructed with 38 support vectors.
In this experiment the object is of particular interest since it consists of two parts
joined by a point, an approximation to a scene of two separate objects. In this case
both the Kohonen feature Map and the Growing Grid do not produce a good model
of the surface. However, it can be appreciated that the SVM method achieves a very
good model and is clearly superior.

In figure 4 the original surface (experimental data from the left ventricle of a hu-
man heart echocardiogram) and the surface models resulting from the application of
the two learning methods (a) Growing Grid and (b) SVM algorithms are shown. For
this case the Growing Grid was a spherical network with 6 initial units randomly
initialized in the interior of the cloud of points. The network was grown up 282
units. The SYM model was constructed with 46 support vectors.
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Fig. 3. Results of two machine learning methods in the modeling of a surface from a solid
generated by a4 foci lemniscate. (a) Growing Grid and (b) SVM Kernel method.
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Fig. 4. Results of two machine learning methods in the modeling of a surface from experi-
mental data (left ventricle of a human heart echocardiogram) (a) Growing Grid and (b) SVM
Kernel method.

4. Conclusions and Future Work

This work compared the application of three machine learning algorithms in the
task of modeling 3D objects from a cloud of points that represents either one or two
objects.

The experiments show that the Kohonen Feature Map and the Growing Grid
methods generate reasonable models for single objects with smooth spheroidal sur-
faces. If the object posses pronounced curvature changes in its surface the modeling
produced by these methods is not very good. An alternative to this result is to allow
the number of units in the network to increase together with a systematic prune
mechanism of the edges in order to take account of the abrupt changes on the sur-
face. This modifications are theme of further work in case of the Growing Grid algo-
rithm.

On the other hand, the experimental results with the Support Vector Kernel
Method are very good. In the case of single smooth objects the algorithm produces a
sparse (small number of support vectors) model for the objects. A very convenient
result for computer graphics manipulations of the object. This extends to the case
with two objects in which the method is able to produce models with split surfaces. A
convenient modification of the SVM algorithm would be to include a better control
on the number of support vectors needed in the model. This possibility could hinder
the rounding tendency observed in the SYM models and alow the modeling of
abrupt changes of the surface as seen on the data of the echocardiogram.

To model multiple objects it is necessary, in the Kohonen and Growing Grid
methods, the application of a splitting algorithm to the topological network. This



splitting algorithm is related to the systematic prune of the edges and is also theme
of further work.

The data sets for multiple objects are not a representation of areal scene. In areal
scene the clusters of data points will be connected by background information (walls
and floor). The future work will also include the extension of the actual algorithms to
make them applicable to real scenes.

Finally it must be noted that in all cases the computational costs of the algorithms
are not very high afact that can lead to real time implementations.
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