
Coordination in Distributed Systems

Juan M. Cordero Mariano Gonzalez
Jesus Torres

Dep. de Lenguajes y Sistemas Informaticos
University of Seville

Keywords: Agent, Component, Coordination, Event, Java, Aspects Pro-
gramming, Petri net, Dynamic System, Distributed System.

Abstract

There is a growing demand for programs which can inter-operate in
distributed environments exchanging information and services. Most of
the difficulty in developing these programs is found in specifying the coor-
dination of those processes involved in reaching a common compute aim
(to carry out a task). The coordination in environments where the pro-
cesses have the same running context has already been studied. There
are different architectural models and specification techniques to describe
the concurrent access to shared resources and to synchronize processes.
These techniques have been greatly used in the domain of operating sys-
tems. In the case of distributed systems there are certain proposals based
on a client/server architecture. However, the use of dynamic distributed
systems which can join, eliminate or substitute processes, force us to de-
fine new models. Moreover, these systems are usually characterised by the
lack of a common space for names which leads to a model whose entities
are greatly uncoupled. It is also necessary to find a solution based on com-
ponents. In this paper we will propose a model and a language to specify
coordination in distributed systems; as well as making the system design
process as compatible as possible to the actual engineering methods of the
software.

1 Introduction

A distributed system is a collection of processes running in parallel on different
processors. These processors do not share common memory spaces, and they
are only connected by a communication net.

An important aspect when specifying distributed systems is coordinating [25]
the actions carried out by those entities participating in the system to reach a
common compute aim. There are three reasons for which the actions must be
coordinated [26]:

1

• When there is inter-dependence between actions carried out by multiple
entities.

• When there are global restrictions: conditions imposed on the entities
concerning the way they find the solution.

• The entities do not have enough information about the problem by them-
selves.

Malone and Crowston [27] identified the following types of inter-dependence:

• Shared resources: the same resource is necessary to carry out different
activities.

• Prerequisite: an entity’s activity must be carried out before another’s.

• Transfer: an activity produced something, which is necessary for another.

• Usability: what is produced by an activity must be usable by another.

• Simultaneity: some activities must or must not happen, at the same time.

• Sub-tasks: a group of activities called sub-tasks do a part of a task.

• Group decisions: all decisions are taken collectively.

It is common to try to resolve only problems of synchronization restrictions,
however we must not forget other problems related to prerequisite and simul-
taneity, which are connected to dependencies between activities.

Coordination gets complicated if the system is dynamic: we do not know the
number of entities participating, or where they are (reference in the system).

The client/server model is the most used model in the distributed systems
architecture. CORBA and JRMI [11], the most popular architecture used today
to develop distributed systems, are based on this model. This model presumes
that all the activities involved in a compute must recognize the other partici-
pants, or at least, those with which it has a client/server relationship.

We must take the following requirements into account in the system model:

• The lack of global time. Every processor has its own local clock; the time
on the different processors in the system may vary.

• Delays in messages between processes. The messages are sent to the net
and there are delays depending on how busy the net is.

• Lack of global state. The system global state is the union of process states,
which participate in the system.

• Autonomy. A client/server relationship between those entities forming up
the system does not necessarily have to exist.

• Evolution. Entities can join up, leave the system or be replaced dynami-
cally.

2

• Concurrency. In theory, different entities participating in a compute in
a distributed system carries out parallel activities, therefore they can be
considered as concurrent activities. However, we have to take into ac-
count concurrency between those entities in the same processor, as well as
concurrency between entities distributed by the system.

Taking these considerations into account we have developed a model and a
language to specify coordination in dynamic distributed systems.

When we have finished specifying the system, and using additional informa-
tion about those entities participating, it is possible to obtain a prototype.

Due to the fact that we can describe coordination characteristics indepen-
dently from computed characteristics, coordination can be regarded as an or-
thogonal concept [23].

Thus, we can separate a concrete aspect from the code design: the coor-
dination aspect. This idea of treating a concrete aspect of the problem when
creating code can be found in [31].

We use two different languages to describe the separation between compute
and coordination.

Coordination can be considered as having two parts: configurations and
interactions. The former is structural relationships between entities. The latter
are links between entities to coordinate the system.

The document is organized as follows. We describe the model used to design
the specification language in section 2. In section 3 we define Interaction Nets
as a way to define interactions, these will be used in section 4 to build Agent
Nets in order to define configurations. The results obtained in prototyping the
specifications can be seen in section 5. We present a brief summary of related
works in section 6. Finally we show our conclusions and some advances for
future work.

2 Proposed Model

We propose an architecture of distributed systems which has no dependence,
no previous knowledge, of those entities involved in the coordinated compute.
This allows us to design dynamic systems where entities can join or leave the
system without stopping or reconfiguring it.

We base the co-operation between entities on the interchange of information
between processes by means of passing messages, in a synchronized or an asyn-
chronized way. These messages represent the states the entities co-operating in
the system are in and establish a protocol of information interchange. They also
represent service requests between entities and the answers of the same. These
messages are called events if we suppose that there is a compute model based
on actions.

The model is based on causal relationships expressed in order of precedence
between events. A system specification is therefore an event algebra [19].

Let us group the events together into high level abstractions, hiding their
internal causal structure. In this way the designer can have simple and abstract

3

views of the system’s behaviour, or of part of it, concentrating on the information
which is considered relevant. The abstraction process may be repeated until the
desired level of abstraction is reached.

In order to generate code after specifying the system using a programming
based on aspects; we must take into account three parts when describing a
system [31]):

• Coordination. The system is made up of objects, which must be coordi-
nated to reach the compute aim. This part is resolved using the concept
of Agent Net (see section 4).

• Communication. Objects communicate with each other through events
described using an Interaction Net (see section 3).

• Compute. This part is express according to the technology of objects used.
We use CORBA-IDL [11] in the examples in this paper.

It is necessary to use a formal technique to reason about the system.
Some of the most commonly used formalisms in distributed systems, due to

their characteristics are: Process Algebra [12], Modal Logic [13] and Petri net
[14].

We are interested in causality relationships between events therefore we will
rule out the use of Modal Logic. We are also interested in expressing true
concurrency, instead of interleaving concurrency. The interleaving concurrency
models suppose that all events have a total order based on real time. However,
this order is not very useful for analyzing causality, therefore only using Process
Algebra is insufficient. Using Petri nets presents two drawbacks. The first being
the size of the nets generated to model a system even when high level nets or
hierarchical nets are used [8]. The second drawback is its static nature, which
does not allow a dynamic system to be described.

This has led to a language, which allows us to have a specification based
on algebraic terms of events [19], which describes implicitly a Petri net of the
system model at the same time. In this way we can, on the one hand, check
the specification using term rewriting techniques and equational reasoning by
means of algebraic expressions, and on the other hand, validate and simulate
the system through the Petri net model using tools such as Design/CPN [15].

We can thus define a partial labeled order, according to the underlying al-
gebraic structure in the Winskel model [2], (E ,A,≤, f), where E is the set of
events partially ordered by the ≤ order relation which models the causal prece-
dence described by Lamport [1], and f is the label function which relates the
events with the actions of the A alphabet.

Finally we will have a language which allows us to build modular Petri nets
as a collection of basic nets. The semantics associated with the net composition
mechanism allows us to modify the system model, as well as to introduce new
events, without changing their global behaviour.

4

3 Interaction Net

3.1 Interaction Pattern

An Interaction Pattern [30] can be defined as a set of events and causal re-
lationships amongst said events. An instance of an interaction pattern in a
distributed compute is a set of events whose labeled and causal relationships
perfectly match the pattern. The same pattern can occur several times in the
same compute. Interaction patterns can be used to build a hierarchy of inter-
action abstractions. In this process the interaction patterns can be interpreted
as high level events.

Due to the fact that the precedence relationships in a distributed compute is
a partial order, it would seem reasonable to demand that the set of events in an
interaction pattern should have a partial order. That is to say, an interaction
pattern is a partially ordered set of events.

3.2 Definition

An Interaction Net (INet) is a Petri net which is extended by introducing incom-
ing events into the transitions. We will call these events INet events. INet events
are used as a composition mechanism amongst INets. Composition between two
INets is carried out by giving one of them an INet event as its incoming event,
and the other generates that event. An INet event modeled by an INet is an
interaction pattern, a compound or abstract event.

When an INet reaches its fire condition, that is, when an instance of a certain
interaction pattern appears, a new INet event is produced. The new INet event
causes a change in state in other INets, as well as allowing possible changes in
state in certain objects which react to the stimulus the event causes.

Although the internal structure of an INet is a Petri net, it cannot be de-
scribed explicitly by defining those elements which form a Petri net: places,
transitions and arcs [14]. That is, we try to make the description less opera-
tional, allowing us to concentrate on the design in the causality relationships
among INet events and in those actions associated with transitions.

In order to achieve this goal the specification language translates the INet
description into a high-level Petri net, connecting an input place to the INet
events, an output place to the fire condition of the modeled INet event, and
a place for every transition. Place tokens are value structures. These values
can be references to objects or primitive data of the object language used. Net
marking and its dynamics depend upon how the transitions receive the INet
events.

We will see the notation used to specify an INet. To be as brief as possible
we have chosen a very simple example, to show our ideas:

event LeftButtonClick {
var time : Clock ;
trans Pressed-Left (c : short)

5

when [PressedLeftButton]
being [c := time.getTime();];

trans Released-Left (c1 : short)
when [Pressed-Left (c2), ReleasedLeftButton]
being [c1 := time.getTime() - c2;];

fire when [Released-Left(c)]
if [c <= 500];

}

For this example, the Java code generated by means of the specification can
be found in [16].

4 Agent Net

4.1 Agent

An agent is an abstraction of an autonomous and co-operative entity. To develop
a system using agents is to model it as a set of active autonomous objects. These
objects are pro-active, that is, they can decide which actions they must carry out
whilst acting independently and concurrently, co-operating through messages.

Agent based software engineering is mentioned in [24] as a facility to create
software which can inter-operate in heterogeneous environments (with different
operative systems, with programs written in different programming languages
and using different machines). In this approach to software development, ap-
plications are written in as software agents, that is, software components which
communicate with other components by interchanging messages.

One of the main differences between objects and agents is that, although both
offer an interface based on messages which are independent to their internal data
structures, in objects their meaning of the messages can vary from one object
to another. On the other hand agents use a common language with semantics
which are independent from the agent.

Another difference between objects and agents is that agents carry out ob-
jectives autonomously and independently whilst objects are naturally passive
(they follow a client/server model).

This concept of an agent is close to the concept of an active object, but it is
different.

4.2 Definition of Agent Net

An Agent Net is a group of objects and INets. Its state is determined by the
states of the objects which it is composed of and by the states of the INets. The
internal structure of an Agent Net is a Petri net, as happens with an INet. This
Petri net is composed of INets forming the Agent Net.

There are two composition mechanisms between INets which create an Agent
Net:

6

• Aggregation. Let us use two INets, neither of them has an input INet event
which generates the other. We will get two Petri nets working parallely.
This composition mode does not mean that the groups of input INet events
are disjoint.

• Interaction. Let us take two INets, at least one of them has the INet event
generated by the other as the input INet event. We will get a single Petri
net. The interaction is modeled in said Petri net as a common place for
the two sub-nets corresponding to each INet.

An Agent Net defines an output interface of INet events which are visible
from the outside, and the input interface where the types of INet events which
can be heard are indicated. It is possible to rename the input INet events
expected by those INets forming the Agent Net.

All the INet events generated inside an Agent Net are visible within the
Agent Net.

There are three types of objects forming an Agent Net:

• Encapsulated objects. These are handled and controlled by the Agent Net.
Actions carried out on these objects depend on the state of the INets
which the Agent Net is made up of.

• Shared objects. These are found in certain places in the system and con-
trolled by a group of Agent Nets. These Agent Nets use a concurrent access
protocol determined by the model of Petri net they configure. The access
is controlled by giving a token as a parameter through the INet events.
The algorithm determining which Agent Net has access to a shared object
is based on [17], an algorithm which applies criteria of fair selection.

• Control objects. These arrive to the Agent Net through the INet event
parameters, and they do not go through a fair selection algorithm as a
copy of them is made for all INets involved.

4.3 Notation

Let us see an outline of the language used to specify Agent Nets.

agent agent name {
require non-integrated agents;
compose integrated agents;
var encapsulated objects;
input INet events;
output INet events;
init { agent initialization }
event INet event name { ... }
method name of method (parameters) { ... }

}

7

A more detailed specification for a distributed system of lift control [18], can
be found in [16]. In this document we will only show a part to be brief:

typedef enum Displacement { upwards, downwards }; typedef enum
Rotation { lev-rotation, dex-rotation };

agent Floor-Detector {
require floor : short ;
require inferior : Sensor rename [Excited as Excited-Inferior];
require superior : Sensor rename [Excited as Excited-Superior];
output At-Floor (short);
event At-Floor (level) {

fire when [Excited-Inferior, Excited-Superior] being [level := floor;];
}

}
agent Cabin-Buttons {

compose level-1 : Lift-Button rename [Pressed as Pressed-1];
compose level-2 : Lift-Button rename [Pressed as Pressed-2];
compose level-3 : Lift-Button rename [Pressed as Pressed-3];
compose door : Lift-Button;
var active-button : boolean[4];
input Attended-Floor (short, Displacement);
output Attend-Cabin (short);
output Open-Door;
init { disable-buttons(); };
event Not-Light toward level-1 {

fire when [Attended-Floor (level, direction)]
if [level == 1] do [active-button[level] := false;];

}
event Light toward level-1 { fire when [Pressed-1]; }
event Attend-Car (level) {

fire when [Pressed-1]
if [not active-button[1]] do [active-button[1] := true;] being [level := 1;];

}
event Open-Door { fire when [door::Pressed]; }
method disable-buttons () {

for(i=1 ; i¡=4 ; i++) active-button[i] := false;
}

}

4.4 Approach based on Components

Using Agent Nets to describe a system allows us to see said system based on
reactive components [5], given that:

• They are continuously operating, continuously interacting with the envi-
ronment, without stopping as happens with other concepts of components

8

which are activated when they receive data and they finish when a result
is produced.

• In response to a trigger, and depending on their present state, they modify
their state.

4.5 Communication

Let us suppose that there is a communication type broadcast among the Agent
Nets of the system. Differently to a more common mechanism of communication
such as passing on a message or rendezvous, a broadcast communication allows
us the following advantages:

• The same information is sent to several Agent Nets in only one operation.

• It allows a dynamic approach as new Agent Nets can be added dynamically
without changing sources.

Although it makes us consider the following:

• An INet event can be present, absent or undefined (it is not persistent
data).

• An INet event cannot be both present and absent in the same instant
(coherency property).

Therefore broadcast communication will be considered in our paradigm as
instant: an INet event is received by all receptors in the same instant it is
generated. Moreover if we consider that an event can be generated and received
in the same instant we will have a perfectly synchronous hypothesis.

5 Formal Definition

5.1 Basic Preliminaries

• An elementary colour set is a finite set of elements called colors, as for
instance

integer == {...,−10, ..., 0, 1, ...}
N == {0, 1, 2, 3, ...}

• A color domain can be an elementary color set or a cartesian product of
countably many such elementary color sets, as for instance

integer
N× integer

9

• Γ is a set of elementary color sets, as for instance

Γ == {integer , string , boolean}

• Γn == Γ× ...× Γ︸ ︷︷ ︸
n

• Γ∗ ==
⋃

n∈N Γn

• πi : γ1 × ... × γn → γi , where γ1 × ... × γn ∈ Γn and πi denotes the
projection on the i th dimension of γ1 × ...× γn color domain

• Cγ is the set of all the constants of the elementary color set γ

• Vγ is the set of variables over the elementary color set γ.

• Symbγ == Cγ ∪Vγ

• C(γ1×...×γn) == Cγ1 × ...× Cγn for a color domain γ1 × ...× γn ∈ Γn

• V(γ1×...×γn) == Vγ1 × ...×Vγn for a color domain γ1 × ...× γn ∈ Γn

• Symb(γ1×...×γn) == Symbγ1× ...×Symbγn for a color domain γ1× ...×γn ∈
Γn

• The type of a variable v is denoted by Type(v)

• The type of an expression expr is denoted by Type(expr)

• The set of variables in an expression expr is denoted by Var(expr). Var(expr)
however only includes free variables, i.e. those which are not bound.

• On elements of Γ we assume to be defined the subtyping relations ¹
and ≺.

T1 ¹ T2 ⇔ T1 = T2 ∨ T1 ≺ T2

T1 ≺ T2 ⇔ every element of T1 is a valid element of T2

• A binding of a set of variables V == {v1, ..., vn} is denoted by b == {v1 7→
c1, ..., vn 7→ cn}, where vi ∈ Vγi and ci ∈ Cγi . If we express the set V as a
multi-demensional variable as V == (v1, ..., vn), a valid binding b for that
variable is a n-tuple of constants C == (c1, ..., cn) such that πi(V) ∈ Cγi

then πi(V) = πi(C), that is, ∀ v : V • b(v) ∈ Type(v). It is demanded that
Type(ci) ¹ Type(vi) for each v in V.

• The value obtained by evaluating an expression expr in a binding b is
denoted by expr < b >. It is demanded that Var(expr) is a subset of
the variables of b, and the evaluation is performed by substituting each
variable vi ∈ Var(expr) with the value ci ∈ Type(vi) determined by the
binding b.

10

5.2 Coloured Petri Net

• As usually, •x and x• are the pre and post sets of a place or a transition
in a Petri net. If S is a set, •S and S• are the union of pre and post sets
of elements of S

• A token distribution is a function M defined on P . We define the
relations 6= and ≤ as:

M1 6= M2 ⇔ ∃ p : P • M1(p) 6= M2(p)
M1 ≤ M2 ⇔ ∀ p : P • M1(p) ≤ M2(p)

The relations <, >, ≥ and = are defined analogously to ≤.

• A binding distribution is a function Y defined on T such that ∀ t : T •
Y (t) ∈ b(t)

• A marking of a CPN is a token distribution.

• The initial marking is the marking obtained by evaluating the initial-
ization expressions.

• A step is a non-empty binding distribution.

• A step Y is enabled in a marking M iff:

∀ p : P • ∑
(t,b)∈Y E (p, t) < b >≤ M (p)

When a step is enabled, it may occur. When a step occurs, tokens are
removed from the input places and added to the output places of the
occurring transitions, based on the transition expression evaluated for the
occurrence bindings.

• A transition t of a CPN is enabled at marking M iff •t ⊆ M . The set of all
enabled transitions at marking M is denoted by Enabled(M). In CPNs,
a marking is not sufficient information to describe a complete state of the
system. The state must also include timing information. This is given
as a clock function that, for each enabled transition, gives the amount of
time that has passed since it has become enabled.

• A state of an CPN is a pair S = (M , I), where M is a marking, and
I : Enabled(M) → T is called the clock function. The initial state of the
CPN is S0 = (M0, I0), where I0(t) = ∅ for all t ∈ Enabled(M0).

5.3 Interaction-Net

An Interaction-Net is 7-tuple INet = (Net ,Pacc ,Tres ,Tacc ,Class,Time,Code)
where:

• Net is a Coloured Petri Net, Net = (P ,T ,Dom,Pre,Post ,Guard ,M0)
with :

11

– P is the finite set of places (ordinary places)

– T is the set of transitions

– P ∩ T = ∅
– DomP : P ∪ T → Γ∗ defines the colour domains for places

– Pre : P × T → bag SymbDomP
defines the backward incidence color

function

– Post : P × T → bag SymbDomP
defines the forward incidence color

function

– Guard defines the guards on transitions

Guard : T → (bag SymbDomt
→ B)

That is, the guard function Guard maps each transition t into a
predicate, i.e. an expression yielding a boolean.

– M0 is a marking for Net and ∀ p : P • M0(p) in bag CDomp where
∀ p : P • Var(M0(p)) = ∅
That is, the initialization function M0 maps each place p into an
expression which is a bag of tokens. The expression is not allowed to
contain any variables.

• Pacc is the set of accept places or interface places holding the tokens mod-
eling requests accepted from the environment, where Pacc ⊂ P is a set of
places such that

∀ pacc : Pacc •• pacc = ∅ ∧ M0(pacc) = [[]]

• Tres is the set of result transitions emitting the tokens modeling results
issued for requests accepted from the environment, where Tres ⊂ T is a
set of transitions such that ∀ tres : Tres • t•res = ∅

• Tacc ⊂ T is a set of transitions such that

– ∀ pacc : Pacc • ∃ tacc : Tacc • tacc ∈ p•acc
– ∀ tacc : Tacc • ∃ pacc : Pacc • pacc ∈• tacc
– Υacc−res : Pacc → Tres is a bijection such that ∀ pacc : Pacc •
∃ t1...tn : T , 1 ≤ i ≤ n − 1 • tn ∈ Tres ∧ t•i ∩• ti+1 6= ∅
The bijection Υacc−res ensures the correspondence between incom-
ing requests and outgoing results, and give an optional semantics to
INet . It ensures that every transition producing an outgoing result
belongs to a potential sequence containing a transition that consumes
an incoming request.

• Class is a set of object types

12

• Time is a timeout function

Time : T → N

That is, the timeout function maps each transition into a natural number,
denoting the timeout value for timeout exception.

• Code is a code function,

Code : T → E

That is, the code function associates an expression with each transition.
The expression is a function representing the piece of code that is executed
on transition occurrence.

5.4 Agent-Net

• Composition of Agent-Nets. Two Agent-Nets A1 and A2 can be com-
bined if there is a mapping

ϕ : Tres(A1) → Pacc(A2)

such that

∀ t : Tres(A1) • Dom(t) = Dom(ϕ(t))

Such constructions allow to build ad-hoc composite components and sub-
systems.

• We call Clients(A1) == {Ai | ∃ϕA1→Ai}, that is the set of components
that can act as clients of A1.

• We call Servers(A2) == {Ai | ∃ϕAi→A2}, that is the set of components
that can act as servers of A2.

6 Results: generation of prototypes

Nowadays the generation of prototypes is not an automatic process. By means
of a specification and using translation schemes and design patterns [33], we can
generate code Java to get a system prototype.

Initially we used JavaSpace [32] to coordinate the system, but it was substi-
tuted by the class packages Jada and SugarCubes, which are based on generative
communication [22]. This is a closer concept to the model described here.

Mainly due to its capacity to pass objects according to their value we use
the client/server model of JRMI to communicate.

We have chosen the JDK1.2 name service [32] for present implementations
although a version using CORBA is being prepared.

13

The compute part is directly obtained from the specification. An Agent Net
is translated as a Thread of Java. We thus improve the system’s workload in
comparison with the former translation scheme which created a Thread for each
INet.

Each INet changes into an event monitor class. The INet events generated
are translated into Java events. We use JavaBeans [32] type construction for
this, which allows for introspection of those events required and generated by
an Agent Net. Each INet stores a list of those INets interested in its INet event.
Also a CORBA event service is being prepared.

In order to improve the systems’s workload, object communication between
Agent Net groups is done by means of a JavaBus [32].

7 Related works

To be brief we will only show some of the works proposing different coordination
models. Some can be grouped together in the category of mathematical models
(they describe coordination by means of abstract mathematical terms), others
as operational models (they concentrate on the necessary operations for coor-
dination) and the rest as structural models (they concentrate on relationships
among entities taking part in coordination).

We can also differentiate between proposals based on centralized coordina-
tion and those based on distributed coordination.

• Actors [7] are autonomous parallel agents distributed in space with their
own execution flow, they communicate using asynchronous messages. The
message sending primitive is similar to an unlock call to a procedure.

• Bates [3] described an automata model called shuffle automata to recog-
nize abstract events. This model cannot be used to recognize true con-
currency, but only interleaving concurrency. This model imposes an event
time order instead of a causal order.

• Hseush and Kaise [4] introduced another type of automata called prede-
cessor automata. They use Data-Path Expressions which are basically
regular concurrent expressions.

• CO-OPN/2 [8] generalizes mechanisms of transition fusion and of hier-
archical nets using the description of a modular approach for Petri nets,
where high-level Petri nets are inside the objects, and using synchronisa-
tion mechanism to control co-operation among objects.

• Cooperative Objects [9] define control structures through high-level Petri
nets in which the tokens are value tuples, and where objects interact,
cooperate with each other through a client/server relationship.

• GEM [20] is an interpreted declarative language used to monitor events.
It uses primitive events to form compound events.

14

• Objective Linda [21] was designed to find the requirements of a coordina-
tion model for open systems. It is based on the existence of object spaces,
these are shared data structures to which you can have access with a min-
imum set of primitives. Communication is carried out inserting, reading
or extracting elements from a shared data structure.

• Darwin [28] is a coordination language which proposes the construction
of distributed programs out of hierarchical structured specifications of
components. The components interact having access to the services offered
by other components.

• The language IOA [29] is for distributed programming based on the I/O
automata model. Together with the IOA toolset it supplies a variety of
validation methods: theorem demonstrator, model checkers and simula-
tors. These can be used to make sure that the generated programs are
correct.

8 Conclusions

The main advantages of the proposed model is a clear separation from the
coordination aspect of the system. The system is seen as a group of anonymous
components which cooperate with each other to reach a common compute goal.

The components observe events produced in the system and they react,
according to interaction patterns, producing changes in the coordinated objects.

The model allows us to establish contexts in the operation of the compo-
nents, therefore one component can have different behaviours depending on the
contexts it is in, but it always acts according to defined interaction patterns.

The prototype generation, by means of the specification of a system, makes
this work a realistic approach to the development of software based on engineer-
ing techniques.

9 Future work

Some of the topics, we are working on are:

• Refinement of the model and extension of the language.

• By means of a Category Theory the definition of semantics of the pro-
posed Petri net model, as well as defining implied inheritance relationship
between INets compositions.

• Automation of the prototype generation process.

• Definition of a methodology to cope with the specification design.

• Checking and Simulation, generating an input for any tool of Petri net
analysis.

15

References

[1] L. Lamport, Time, Clocks and the Ordering of Events in a Distributed
System, Communications of the ACM, 21(7):558-565, July 1978.

[2] G. Winskel, An Introduction to Event Structures, Vol. 354 of Lecture Notes
in Computer Science, pages 364-397, Springer Verlag, 1989.

[3] P.C. Bates, Shuffle Automata: A Formal model for Behaviour Recogni-
tion in Distributed Systems, Technical Report 87-27, University of Mas-
sachusetts, Computer and Information Science Department, Amherst, Mas-
sachusetts, USA, 1987.

[4] W. Hseush y G.E. Kaiser, Modeling Concurrency in Parallel Debugging,
ACM SIGPLAN Notices, 25(3):11-20, March 1990.

[5] D. Harel y A. Pnueli, On the Development of Reactive Systems, NATO ASI
Series F, Vol. 13, Springer Verlag, 1985.

[6] D. Gelernter, Generative Communication in Linda, ACM Transactions on
Programming Languages and Systems, 7(1), 1985.

[7] S. Frolund, Coordinating Distributed Objects, The MIT Press, 1996.

[8] O. Biberstein y Didier Buchs, CO-OPN/2: a specification language for
distributed systems engineering, University of Geneva, 1995.

[9] R. Bastide, Cooperative Objects: A concurrent, Petri Net Based, Object-
Oriented Language, University of Toulousse, 1992.

[10] K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical use, Vol. 1, EATCS Monographs on Theoretical Computer Sci-
ence, Springer-Verlag, 1992.

[11] R. Orfali y D. Harkey, Client/Server Programming with Java and CORBA,
Wiley, 1998.

[12] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.

[13] S. Abramsky, D.M. Gabbay y T.S. Maibaum, Handbook of Logic in Com-
puter Science, Oxford Science Publications, Volumen 2, 1992.

[14] M. Silva, Las Redes de Petri: en la Automática y la Informática, Edited
by AC, 1985.

[15] K. Jensen, S. Christensen, P. Huber y M. Holla, Design/CPN, Meta Soft-
ware Corporation, Cambridge, Massachusetts, USA, 1991.

[16] J.M. Cordero, ftp://www.lsi.us.es/ cordero/RedI/ejemplos

16

[17] R. Corchuelo, O. Martn, M. Toro, A. Ruiz y J.M. Prieto, Weak Fairness
in the Context of Constraint-Based Multiparty Interactions, Proceedings
of Spanish Symposium of Distributed Informatic, Editor: S. Barro, N.R.
Brisaboa, J.M. Busta y F. F. Rivera, Santiago de Compostela, february
1999.

[18] Francez, Interacting Processes

[19] H. Alexander, Formally-Based Tools and Techniques for Human-Computer
Dialogues, Ellis Horwood Limited, 1987.

[20] M. Mansouri-Samani y M. Sloman, GEM. A Generalised Event Monitor-
ing Language for Distributed Systems, IEE/IOP/BCS Distributed Systems
Engineering Journal, Volumen 4, Number 2, june 1997.

[21] T. Kielmann, Designing a Coordination Model for Open Systems, Lecture
Notes in Computer Science, pages 267-284, Springer, 1996.

[22] C.F. Tschudin, On the Structuring of Computer Communications, PhD
thesis, University of Geneva, 1993.

[23] P. Ciancarini, K.K. Jensen, y D. Yankelevich, On the operational semantics
of a coordination language, LNCS 924, pages 77-106, Springer-Varlag, 1995.

[24] M.R. Genesereth y S.P. Ketchpel, Software Agents, Communications of the
ACM 37 (7), pag. 48-53, 1994.

[25] T.W. Malone y K. Crowston, The interdisciplinary study of coordination,
ACM Computing Surveys, 26(1):87-119, march 1994.

[26] N. R. Jennings, Coordination Techniques for Distributed Artificial Intel-
ligence, Foundations of Distributed Artificial Intelligence, pages 187-210,
John Willey & Sons, 1996.

[27] T. Malone y K. Crowston, The Interdisciplinary Study of Coordination,
ACM Computing Surveys, vol. 26, num. 1, march 1994.

[28] J. Magee, J. Kramer y N. Dulay, Darwin/mp: An environment for parallel
and distributed programming, Proceedings of 26th Annual Hawaii Interna-
tional Conference on System Sciences, volumen 2, IEEE Computer Society
Press, 1993.

[29] S.J. Garland y N. A. Lynch, The IOA Language and Toolset: Support for
Designing, Analysing, and Building Distributed Systems, MIT Laboratory
for Computer Science, Cambridge, MA, 1998.

[30] G. Agha, Abstracting interaction patterns: A programming paradigm for
open distributed systems, FMOODS’97 proceedings, 1997.

17

[31] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier
y J. Irwin, Aspect-oriented programming, ECOOP’97 proceedings, LNCS
1241, pages 220-242, Springer-Verlag, june 1997.

[32] J. Jaworski, Java 1.2 Al descubierto, Prentice Hall, 1999.

[33] D. Lea, Concurrent Programming in Java. Design Principles and Patterns,
Addison Wesley, 1997.

18

