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Abstract. This paper deals with the application of multi-objective optimization
to the diagnosis of Paroxysmal Atrial Fibrillation (PAF). The automatic
diagnosis of patients that suffer PAF is done by analysing Electrocardiogram
(ECG) traces with no explicit fibrillation episode. This task presents difficult
problems to solve, and, although it has been addressed by several authors, none
of them has obtained definitive results. A recent international initiative to study
the viability of such an automatic diagnosis application has concluded that it
can be achieved, with a reasonable efficiency. Furthermore, such an application
is clinically important because it is based on a non-invasive examination and
can be used to decide whether more specific and complex diagnosis testing is
required. In this paper we have formulated the problem in order to be
approached by a multi-objective optimisation algorithm, providing good results
through this alternative.

1  Introduction

Most real-world optimisation problems are multi-objective in nature, since they
normally have several (usually conflicting) objectives that must be satisfied at the
same time. These problems are known as MOP (Multi-objective Optimisation
Problems) [1]. The notion of optimum has to be re-defined in this context, as we no
longer aim to find a single solution; a procedure for solving MOP should determine a
set of good compromises or trade-off solutions, generally known as Pareto optimal
solutions from which the decision maker will select one. These solutions are optimal
in the wider sense that no other solution in the search space is superior when all
objectives are considered.

Evolutionary Algorithms (EAs) have the potential to find multiple Pareto optimal
solutions in a single run and have been widely used in this area  [2,3]. After the first
studies on evolutionary multi-objective optimisation (EMO) in the mid-1980s, a
number of Pareto-based techniques were proposed, e.g. MOGA [4], NSGA [5] and
NPGA [6]. These approaches did not explicitly incorporate elitism: recently, however,
the importance of this concept in multi-objective searching has been recognized and
supported experimentally [2,7,8]. In this sense, the present work continues exploring
the benefits of elitism by presenting a new elitist EMO algorithm that uses the first



front of non-dominated individuals in the current population to update an external set
of best current solutions. Periodically, a filtering function is used to preserve diversity
in the population. A selection procedure is applied to obtain the mating pool by
randomly choosing candidate solutions from the external set and the current
population. The usual variation operators are then applied to produce an offspring set
which becomes the new population.

The Atrial Fibrillation is the heart arrhythmia that causes most frequently embolic
events that may generate cerebrovascular accidents. The NSFGA and some others
MO evolutionary algorithms are applied to Paroxysmal Atrial Fibrillation (PAF)
diagnosis. The automatic diagnosis of patients that suffer Paroxysmal Atrial
Fibrillation is done by analysing Electrocardiogram (ECG) traces with no explicit
fibrillation episode. This task presents difficult problems to solve, and, although it has
been addressed by several authors[9], none of them has obtained definitive results.
Thus the automatic PAF diagnosis remains an open problem. A recent international
initiative to study the viability of such an automatic diagnosis application has
concluded that it can be achieved, with a reasonable efficiency [9,10]. Furthermore,
such an application is clinically important because it is based on a non-invasive
examination and can be used to decide whether more specific and complex diagnosis
testing is required. In this paper we have formulated the problem in order to be
approached by a multi-objective optimisation algorithm, providing good results
through this alternative.

In this paper, Section 2 introduces the MOPs and provides a brief survey about the
evolutionary multi-objective techniques previously proposed. Section 3 presents the
new single front genetic algorithm for multi-objective optimisation (NSFGA) while
Section 4 describes the way PAF diagnosis has been solved by using a multi-objective
optimisation approach. Finally, experimental results corresponding to the comparison
of the different multi-objective optimization algorithms are given in Section 5 and the
concluding remarks are summarized in Section 6.

2   Evolutionary algorithms for multi-objective optimization

A multi-objective optimisation problem (MOP) can be defined [1] as one of finding a
vector of decision variables that satisfies a set of constraints and optimises a vector
function whose elements represent the objectives. These functions form a
mathematical description of performance criteria, and are usually in conflict with each
other.

The problem can be formally stated as finding the vector x* = [x1

*,x2

*, ... , xn

*]
which satisfies the m inequality constraints

gi (x) ≥ 0   i=1,2,...,m (1)

the p equality constraints

hi (x) = 0  i=1,2,...,p (2)

and optimizes the vector function

f(x) = [f1 (x), f2 (x), ..., fk (x)]T (3)



where x = [x1, x2, ..., xn]
T is a vector of decision variables.

The constraints given by (1) and (2) define the feasible region Φ: any point x in Φ
is a feasible solution.

The vector function f (x) is one that maps the set Φ in the set χ of all possible
values of the objective functions. The k components of the vector f (x) represent the
non-commensurable criteria to be considered. The constraints gi (x) and hi (x)
represent the restriction imposed on the decision variables. The vector x* is reserved
to denote the optimal solutions (normally there will be more than one).

The meaning of optimum is not well defined in this context, since in these
problems it is difficult to have an x* where all the components of fi (x) have a
minimum in Φ. Thus, a point x*∈Φ is defined as Pareto Optimal

If ki ..1:, =∀Φ∈∀x , )()())()(( xxxx **
iiii fforff <= (4)

The inequality equation in (4) must be fulfilled by at least one component i.
This means that x* is Pareto optimal if there exists no feasible vector x which

would decrease one criterion without causing a simultaneous increase in at least one
of the others. The notion of Pareto optimum almost always gives, not a single
solution, but rather a set of solutions called non-inferior or non-dominated solutions
(Figure1). This set of non-dominated solutions is known as the Pareto front. As, in
general, it is not easy to find an analytical expression for the Pareto front, the usual
procedure is to determine a set of Pareto optimal points  that provide a good
approximate description of the Pareto front .
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Fig. 1. Two-objective space

Evolutionary algorithms seem to be especially suited to multi-objective
optimisation because they are able to capture multiple Pareto-optimal solutions in a
single run, and may exploit similarities of solutions by recombination. Indeed, some
research suggests that multi-objective optimisation might be an area where EAs
perform better than other search strategies. The considerable amount of research



related to MOEAs currently reported in the literature is evidence of present interest in
this subject.

Pareto-based fitness assignment in a genetic algorithm (GA) was first proposed by
Goldberg [11]. The basic idea is to find a set of Pareto non-dominated individuals in
the population. These individuals are then assigned the highest rank and eliminated
from further competition. Then, another set of Pareto non-dominated individuals are
determined from the remaining population and are assigned the next highest rank.
This process continues until the whole population is suitably ranked.  Goldberg also
suggested the use of a niching technique [12] to preserve diversity in the population,
in order to converge to different solutions.

The Non-dominated Sorting Genetic Algorithm (NSGA) [5] uses several layers of
ranked individuals. Before selection is performed, the population is ranked on the
basis of non-domination: all non-dominated individuals are classified into one
category (with a dummy fitness value, which is proportional to the population size, to
provide an equal reproductive potential for these individuals). To maintain the
diversity of the population, those so classified are shared with their dummy fitness
values. Then this group of classified individuals is ignored and another layer of non-
dominated individuals is considered. The process continues until all individuals in the
population have been classified. Then a stochastic remainder proportionate selection
is used, followed by the usual cross and mutation operators. An improved version of
NSGA (called NSGA-II) that uses less parameter has been proposed more recently
[8].

Fonseca and Fleming [4] have proposed an algorithm called Multiple Objective
Genetic Algorithm (MOGA) where the rank of each individual is obtained from the
number of individuals in the current population that dominate it. Thus, if at generation
t, an individual xi is dominated by pi (t) individuals, its current rank can be given by:

Rank (xi, t)=1+pi (t)
All non-dominated individuals are assigned rank 1, while dominated ones are

penalized according to the population density of the corresponding region of the
trade-off surface. In this way, the fitness assignment is performed by the following
steps:

1. - Sort population according to the rank of the individuals.
2. - Assign fitness to individuals by interpolating from the best (rank 1) to the

worst (rank n<=N), according to a function (not necessarily linear)
3. - Average the fitness of individuals with the same rank, so that all of them will

be sampled at the same rate.
In their Niched Pareto Genetic Algorithm (NPGA), Horn and Nafpliotis [6]

proposed a tournament selection scheme based on Pareto dominance. Instead of
limiting the comparison to two individuals, a number of other individuals (usually
about 10) in the population are used to help determine dominance. Whether the
competitors are dominated or non-dominated, the result is decided through fitness
sharing.

Zitzler and Thiele [7] suggested an elitist multi-criterion EA with the concept of
non-domination in their Strength Pareto Evolutionary Algorithm (SPEA). They
suggested maintaining an external population at every generation storing all non-
dominated solutions discovered so far beginning from the initial population. This
external population participates in genetic operations. At each generation, a combined
population with the external and the current population is first constructed. All non-
dominated solutions in the combined population are assigned a fitness based on the



number of solutions they dominate, and dominated solutions are assigned fitness
worse than the worst fitness of any non-dominated solution. This fitness assignment
assures that the search is directed towards the non-dominated solutions. A
deterministic clustering technique is also used to maintain diversity among non-
dominated solutions. Although the implementation suggested is O (mN3), with
appropriate bookkeeping the complexity of SPEA can be reduced to O (mN2). An
improved version of SPEA known as SPEA2 [13] has recently been proposed. This
incorporates additionally fine-grained fitness assignment strategy, a density
estimation technique, and an enhanced archive truncation method.

Knowles and Corne [14] suggested a simple MOEA using an evolutionary
strategy (ES). In their Pareto-Archived ES (PAES), a parent and a child are compared.
If the child dominates the parent, the child is accepted as the next parent and the
iteration continues. On the other hand, if the parent dominates the child, the child is
discarded and a new mutated solution (a new child) is found. However, if the child
and the parent do not dominate each other, the choice between the child and the
parent considers the second objective of maintaining diversity among obtained
solutions. To achieve this diversity, an archive of non-dominated solutions is created.
The child is compared with the archive to determine whether it dominates any
member of the archive. If so, the child is accepted as the new parent and the
dominated solution is eliminated from the archive. If the child does not dominate any
member of the archive, both parent and child are examinated for their proximity to the
solutions of the archive. If the child resides in an uncrowded region in the parameter
space among the members of the archive, it is accepted as a parent and a copy is
added to the archive. Knowles and Corne later, suggested a multiparent PAES with
similar principles to the above. The authors have calculated the worst case complexity
of PAES for N evaluations as O(amN) where a is the archive length. Since the archive
size is usually chosen proportional to the population size N, the overall complexity of
the algorithm is O(mN2).

3  The New Single Front Genetic Algorithm

The Single Front Genetic Algorithm [15], previously proposed by some of the
authors, implements a super elitist procedure in which only the non-dominated (and
well-diversified) individuals in the current population are copied to the mating pool
for recombination purposes and all non-dominated individuals in the current
population are copied to the next population (see Figure 2.a). The rest of the
individuals required to complete the population are obtained by recombination and
mutation of these non-dominated individuals. The preservation of diversity in the
population is ensured by means of a filtering function, which prevents the crowding
of individuals by removing individuals according to a given grid in the objective
space. The filtering function uses the distance evaluated in the objective space. This
approach has proved very effective when applied to Zitzler test functions in
comparison to other similar algorithms that use a more complex selection scheme to
produce the mating pool

In the new single front genetic algorithm (Figure 2.b), some features have been
added to the original SFGA. Firstly an external archive keeps track of the best current
solutions found during the running of the algorithm. A selection procedure produces a



mating pool of size S by randomly choosing individuals from the external set and the
filtered current population. The variation operators produce the offspring set that is
copied to the next population. The updating procedure adds the first front of non-
dominated individuals to the current population and deletes the dominated individuals
from the archive.
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Fig. 2.: Description of SFGA (a) and NSFGA (b).

4   The problem of PAF Diagnosis

A public database for PAF diagnosis applications is available [16], comprising
registers obtained from 25 healthy individuals and 25 patients diagnosed with PAF. In
this paper, multi-objective optimisation is applied to improve the ability to
automatically discriminate registers of these two groups with a certain degree of
accuracy. For this purpose, 48 parameters were extracted from each ECG register [17]
to obtain a 48 component vector that characterizes each subject (p1…p48). We have
implemented a diagnosis scheme based on weighted threshold dependent decision
rules that the multi-objective optimisation procedure will determine. For each
parameter we can apply 4 different decision rules:



If pi<Ui(Low_1) then CPAF=CPAF+Wi1

If pi<Ui(Low_2) then CPAF=CPAF-Wi2

If pi>Ui(High_1) then CPAF=CPAF+Wi3

If pi>Ui(High_2) then CPAF=CPAF-Wi4

Where U represents different thresholds, CPAF is a level that will determine the final
diagnosis and the weights (Wij) are constrained in the interval [0,1]. Thus, the first and
third rules increment CPAF (leading to a positive PAF diagnosis) while the second and
fourth rules decrement CPAF (leading to a negative PAF diagnosis).

In the diagnosis procedure, the CPAF level is finally compared with a security
interval [-F, F]. If CPAF remains within this interval we consider there is not enough
certainty about the diagnosis and we leave this case undiagnosed. If CPAF>F the
subject is diagnosed positive (as PAF patient), while if CPAF<F it is diagnosed
negative.

The multi-objective optimisation procedure uses two objectives to be applied to
this diagnosis application: the Classification Rate (CR) and the Coverage Level (CL),
defined in (5) and (6), respectively.

CasesDiagnosedofNumber

CasesDiagnosedCorrect
CR = (5)

CasesofNumberTotal

CasesDiagnosedofNumber
CL = (6)

High levels of F increment CR because the certainty of the diagnosis rises but it
leads to a low CL because it leaves more undiagnosed cases.

This approach could take into consideration 48 parameters with 4 decision rules
associated with each of them. In each decision rule the variables to be fixed are the
threshold (U) and the weight (W). Therefore we can configure a chromosome with
192 weights and 192 thresholds to be optimised.

In order to reduce the complexity of the optimisation problem, and after a
statistical study, an expert selected a subset of 32 rules and their associated 32
thresholds that apparently maximize the discrimination power. In this way, the
chromosome length is reduced to 32 (weights) if the expert thresholds are adopted or
to 64 if weights and thresholds are optimised.

5   Experimental Results

For performance comparison, the hypervolume metric [7] for maximization problems
has been used (see Table1). For the sake of simplicity just S metric is shown. S(A) is
the volume of the space that is dominated  by the pareto optimal solution set A. All of
the algorithms were executed with the same initial population. The filter parameter, ft,
is set to 0.01, the mutation probability per gene is 0.01 and the crossover probability
is 0.6. Each Algorithm is executed for 1000 iterations and the population size is set to
200. In Fig 3-5 are shown the solutions in the objective space: CR (Vertical Axis)
versus CL (horizontal axis) for all SFGA, NSFGA and SPEA [7]. We have considered
two cases:



(1) PAF diagnosis: optimisation of weights of decision rules given by an expert.
In this case the chromosome length is 32, and only the weights associated
with the decision rules given by an expert are optimised (see Figures 3a-5a)

(2) PAF diagnosis: optimisation of threshold and weights of the decision rules
given by an expert. In this case the chromosome length is 64. The parameters
to be optimised are the 32 weights and 32 thresholds for the rules selected by
an expert (see Fig. 3b-5b). Solutions found by an expert are available for F=1
and included in Fig.4b.

6  Concluding Remarks

This paper presents the New Single Front Genetic Algorithm (NSFGA).  The
NSFGA, SFGA and SPEA are applied to the PAF diagnosis problem. All algorithms
show a similar performance. The experiments show that NSFGA and SPEA provide
very similar results, and that better results are obtained when both threshold and
weights are optimised (SPEA64, NSFGA64 in Table 1). Moreover, our procedure has
improved SPEA results in some cases (threshold given by an expert with F=1.5 and
threshold not given by an expert and F=1). The application of multi-objective
optimisation to PAF diagnosis is a new approach to tackle this problem. This
procedure achieves classification results that are similar to classic schemes but
searches optimised values for weights and thresholds that would otherwise have to be
given by an expert. In this way, the integration of new rules is made automatic by
applying EAs. Furthermore, these MO optimisation schemes lead to multiple
solutions that can be of interest for certain patients who suffer from other disorders. In
these cases some decision rules may become unreliable and certain solutions are more
suitable than others.

Acknowledgements. This paper has been supported by the Spanish Ministerio de Ciencia y
Tecnología under grant TIC2000-1348.

Table 1. Performance of the algorithms for the 32-gene and 64-gene problems

F SFGA32 NSFGA32 SPEA32 SFGA64 NSFGA64 SPEA64

0.5 0.82016 0.81849 0.83010 0.92555 0.93026 0.96605
1 0.80538 0.79240 0.81015 0.94943 0.96698 0.95733
1.5 0.77278 0.78852 0.78331 0.86934 0.89811 0.92828
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Fig. 3. Pareto optimal solutions for F=0.5
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Fig 4. Pareto optimal solutions for F=1
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