
An approach for systematic interface design from
knowledge models

Taisa C. Novello*, Mara Abel*, Marcelo Pimenta*, Jesualdo Tomás
Fernández-Breis**, Rodrigo Martínez-Béjar**

novello@inf.ufrgs.br, marabel@inf.ufrgs.br,
mpimenta@inf.ufrgs.br, jfernand@dif.um.es, rodrigo@dif.um.es

*Instituto de Informática - Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil

**Facultad de Informática, Universidad de Murcia, 30071 Espinardo, Murcia, Spain

Abstract. In this paper, an ontology -based approach for specifying interaction
objects to build knowledge-based systems interfaces is presented. The ontology
mapping enables the design of effective user interfaces for knowledge-based
systems (KBS), according to the principle of structure-preserving design. This
mapping from ontological objects onto interface issues is performed according
to their role in the domain. For this purpose, the CommonKADS
communication model has been extended in this work to include the definition
of interface elements associated with domain knowledge primitives. A
geological expert system has been the instrument for validating the approach.

1. Introduction

The motivation for this work comes from our experience in a project consisting in the
development and maintenance of a real knowledge-based system (KBS) in geology.
In this project, we had to face the problem of having to adapt already implemented
knowledge models to user-understandable interfaces. In this work, we propose a
systematic method to do this in the context of CommonKADS KBSs.

The classical software engineering lifecycle does not assume user interface design as
a core activity. Moreover, traditional software development models do not clearly
identify a role for Human Computer interaction (HCI) at any stage. User interface
concerns are ‘mixed in’ with wider development activities. This may result in either
HCI being ignored or it being relegated to an afterthought during the later stages of
design. In either case, consequences can be disastrous because the later ‘usability’
issues are introduced in the development cycle, the higher the cost will be. In fact,
since the early 1980's, there are several mechanisms or techniques that can be used to
introduce HCI into the software development lifecycle like methods, guidelines and
tools. For all of them, there are many steps to be performed before generating an
initial user interface prototype: selection of interaction style, definition of presentation
units, selection of interaction objects, etc. In fact, designing user interfaces involves
the selection of preferred options from a number of competing alternatives. In this

paper, we particularly analyse the possibility of having little or no support in selecting
appropriate interaction objects for a specific task. Although there is an evident
progress in providing methodological answers to some interface issues, in contrast,
very little attention has been paid to the definition of complete approaches for
automatically deriving interface components from application models.
KBSs dealing with non trivial information and following unpredictable steps of
interaction may include additional difficulties in the already hard task of user
interface definition. The typical dialogue between user and system involves some
steps that must be performed using interface facilities provided by the system. It is
developed following the knowledge model objectives, which are defined by the tasks.
A task defines the specific information to collect from the user and the way the
system will interact to display the partial or final inference results. This is usually not
a linear input, transformation or output flow. On the contrary, this involves tasks
sequences that start transactions, which are responsible for requiring and consuming
information. Consequently, methodologies are frequently focussed on supporting the
definition and control of the system dialog instead of interface design aspects.
Creating an initial prototype of the user interface from scratch is a handcraft task. In
classical cyclic user interface developments, this first prototype passes through many
sessions of user evaluation and further revisions until becoming accepted. Even so,
producing such prototype is recognised as the most difficult stage in the user interface
designing activity for a new system. However, we think that the relationship between
ontological elements and interface issues can be used to assist in the definition of the
interface objects and in the generation of the first version of a user interface in a KBS
project.
A domain ontology describes the domain concepts and the underlying conceptual
organisation ([7];[8]), which typically is an abstraction of the structure and behaviour
of some particular domain, defined as the formal specification of a shared
conceptualization [9]. Ontological engineering and knowledge acquisition tools are
used for designing user-interfaces and for building ontologies in many contexts, for
instance, in an interface system for an oil refinery plant [12]. We believe that any
human interaction within a certain domain should be done by means of the objects
recognized into the ontology and reflecting the expected behaviour. This principle,
already explored through the structure-preserving design proposed in CommonKADS
[14] can also be applied in the definition and choice of issues for user interaction.
This work shows the possibilities of modelling and designing interface components,
according to the structure-preserving design principle.

2. CommonKADS

CommonKADS is the most well known software engineering approach for KBS
development and it has become a full methodology supporting all KBS development
aspects. This goal is reached by following a few basic principles [14]. The first
principle approaches knowledge engineering as a modelling activity, in opposition to
previous approaches in which knowledge should be extracted from the expert’s mind.
The knowledge-level principle states that, in knowledge modelling, it is necessary to

concentrate first on conceptual knowledge structures, postponing programming
details. The third principle recognises the stable structure of knowledge, so that
specific knowledge types and roles can be distinguished. Finally, a software project
that deals with knowledge cannot be developed in the traditional waterfall model. It
must be managed by learning from its own experience, in a controlled spiral cycle,
supported by the model.
Moreover, in CommonKADS, the system is developed as a suite of models which
allows defining formally each aspect of the software development in a separate way.
The organisational model, task model and agent model allow for the comprehension
of the organizational context in which the knowledge intensive task is inserted in
terms of benefits, costs and impacts. By their side, the knowledge model and the
communication model deal with the nature and structure of the domain knowledge
involved in the task and also how this knowledge and the new one produced by the
system are transmitted to every producer or consumer agent (people or system). The
whole requirements set collected in every suite mo del component is considered in the
development of the design model, which provides the technical specification for
system development.
The knowledge model is the core of a knowledge-based system, so that the concepts
and the structure represented can be identified through components from the
implementation level. In fact, this is strongly enforced by the structure-preserving
design principle, which asserts that the information content and the structure present
in the knowledge model should be preserved in the system components. The design
process is seen as the process of adding implementation details to a previously
defined analysis model. Design specification fills the details that were left open
during the analysis stages such as representational formats, computational methods of
computing inferences, dynamic data storage or the communication media. The
advantage of structure-preserving design, according to the CommonKADS authors, is
that the knowledge level and the communication model act as high-level
implementation documentation, keeping the relation with elements in the code which
should be adapted in case of changing the model specification.
The main goal of CommonKADS communication model is to specify information
exchange between tasks that are carried out by different agents. The transaction is
the building block of dialogue between agents, and it is associated with information or
knowledge exchanged by two agents. Therefore, the communication model, as it is
specified in CommonKADS, describes the communication plan among system
components and information content, but it is not concerned with design aspects or
interface issues.

3. Extending the CommonKADS Communication Model with
Interface Objects

3.1 Our Knowledge Model

Knowledge models in CommonKADS specify the knowledge and reasoning
requirements of a knowledge-based system, and allow clarifying data and knowledge
structures required for a knowledge intensive task. They are comprised of three
distinct components: (1) domain knowledge specifies the declarative domain
knowledge or how the concepts or objects are organized in that particular domain,
expressed through the ontology of the domain (e.g., rocks, minerals), and, also, what
we know related to some particular task (i.e, rules , restrictions and so on); (2)
inference knowledge describes the basic inference steps that are usually followed in
the domain to solve tasks (e.g., select, match); (3) task knowledge has information
about the problem to be solved in the domain and how it can be decomposed to make
it clear what the steps and information necessary for the solution are.

The knowledge model in our system, namely, PetroGrapher [2], is represented by a
domain ontology. An ontology is commonly viewed as a specification of a domain
knowledge conceptualization [15]. In this work, the ontological model is comprised of
concepts, attributes, values and relations between concepts. The domain ontology
describes types of concepts and attributes, which will compound later on the
information items.
In the last years, ontologies have become more and more important for representing
knowledge. Consequently, different tools and frameworks have appeared with
different purposes. Some frameworks are devoted to facilitate the design of ontologies
(i.e., Methontology [6]). On the other hand, there are different systems to specify
ontologies such as OntoEdit (http://www.ontoprise.de). However, the underlying
ontological model in most of such systems and frameworks does not offer many
modelling facilities to the user. In this way, most of them only include the taxonomic
relation. A survey of different ontological tools is shown in [5].This survey shows that
no one of the currently available tools fully satisfies the needs of ontology developers.
There is another research trend that attempts to integrate the knowledge contained in
different ontologies (i.e, [13]).
With all, we developed our own ontology (knowledge) editor, so that the resulting
ontology was a result of the knowledge acquisition process, in which the collection of
cases in a geological domain played a significant role. A mereology was obtained
from such process so filling in the current gap which lacks ontologies different from
taxonomies exclusively. The mereology reflects the structure extracted in the process
of abstraction of several sets of cases [3]. The part-of relation is associated to the
unique identification of each compound object, which is displayed in each component
part. Moreover, properties such as transitivity and non-symmetry were considered in
the implementation. The taxonomic relation plays a secondary role in the domain
identifying different classes of rocks and minerals recognized by the system. Other
particular kinds of relationships can be recognized in the domain ontology: (1)

restrict, defining which concepts can be seen as values of attributes of other concepts;
and (2) implicate, stating logical relations of evidences and conclusions in the
domain, it being useful to support the inference process. Relations are defined through
its name and its cardinality [1]. Conceptual attributes have types defined in the
knowledge model, reflecting their behaviour in the domain. Some default format is
also included in the model (i.e., how attributes can be viewed). Typical attribute
types are: real, a numerical value, such as the depth of well log; numerical , such as
the percentages of minerals of a rock; ; strings of characters with defined sizes, for
names of units, places, etc; symbolic, values previously defined in the model
nomenclature. The symbolic values of attributes can be defined as being unique
(value domain defined as one-of) or multi-valued (defined as list-of). Also, the value
can be informal, meaning that it does not receive any semantic or inference treatment.

3.2 The Communication Model

The communication model specifies the information exchange between agents
(systems or people) carrying out tasks in the domain. The transaction expresses the
communication model and it is defined in terms of agents involved in the task,
information items, message specifications and control over messages. While the agent
refers to the KBS and user, this transaction defines the interface communication plan
with the user. The communication model proposed here can also deal with aspects of
user interface design, besides representing the information about which information is
exchanged among agents and control aspects. We propose how knowledge and
communication models need to be improved in order to achieve this goal, and to
demonstrate the use of the new conception through a real KBS application in the
Petrography of oil-reservoir rocks domain.
In Table 1, a modification over the CommonKADS Communication Model, described
in [14],to deal with interaction issues, is introduced. The extension of the model
follows some premises about the KBS behavior and domain ontology:

1. Any concept, attribute and relation that is considered in the system, even if it is
generated by inference, are specified in the ontology. Moreover, interaction
messages are also specified as domain expressions or statements in the
knowledge model.

2. Any system interaction will refer to some knowledge specified in the ontology
or stored in the knowledge base.

3. Each knowledge type defined in the knowledge model has a particular set of
properties which influences the choice of the interface object. These properties
express the domain behaviour and should be explicitly defined along with the
object.

From these principles, we can formalize the influence of the elements in the
knowledge model over the definition of interface objects and their behaviour.
Therefore, the selection of the interface object will be done according to: (1) the
sender and receiver in the transaction definition; (2) the type of concept, concept-
attribute or domain expression that is referred in the information item, and specified
in the ontology; (3) the syntactic form of the information, included in the knowledge
model; (4) the item’s role (i.e., input, output or orientation message). Message

specifications are defined according to the treatment provided by CommonKADS.
However, as messages produced by the system are represented in the knowledge
model, they can be treated as information items in the Communication Model. Table 1
presents a part of communication model in the reservoir rock application.

Table 1. An example of transaction in the PetroGrapher system.

Communication Model Information Exchange Specification
1. Sender: User Agents involved
2. Receiver: KBS
1. Object: Concept Microscopy
2. Role: Core Object

Information Items

3. Medium: Presentation Unit, Microscopic Window
1. Communication Type: Ask for the rock grain size of
the sample.
2. Content: “Enter the rock grain size ”

Message Specifications

3. Reference: Siliciclastic knowledge Base
Control Control: keep the message until the user provides

information or change the PU.

4. The Mapping Between Ontology Elements and Interface Objects

In order to complete the information about transactions, it is necessary to define
which medium needs to be associated with each information item in the information
exchange. This is done according to the type of ontology category (concepts,
attributes, expressions) that is associated with the transaction. Since transaction
information items are defined according to the ontology content, the communication
model does not need to define any syntactic format associated with the information
items. The cardinality of the relationship influences the presentation of attributes [4].
A one-to-one relationship between two entities has no additional effect on the
presentation, because they are already grouped according to their logical relation. In a
one-to-many relationship, an aggregation view is needed to show more than one
relationship instance. This is demonstrated in our model by allowing the user to
navigate or visualise all interfaces with the same sample Unique Identification. The
relationship between interface objects and primitives in the ontology is described in
Table 2, in accordance with the syntactic characteristics of each concept and its
attributes.
The first object, the Concept, which is defined through its attributes into the ontology,
is mapped onto Presentation Units (PUs), namely, an input/display world (interface)
decomposed into windows (which do not need to be all present at the same time). The
PU is built on top of Concrete Interactive of Objects (CIO), which represent
attributes, graphics and images of concepts. This mapping can be illustrated through
the concept Microscopic, which describes some set of features recognisable in a thin
section of a reservoir rock, and is represented in the knowledge model as the attributes
of the Microscopic Concept. The way this concept and its attributes are materialized

into the user interface is described in Table 3, and the resulting interface is presented
in Figure 1.

Table 2. Mapping between CommonKADS primitives and interface objects.

Ontology(Knowledge level) Implementation Level
Concept Presentation Unit
Attribute Edit box
Value Object
Graphic Objects (graphs, triangles) Graphic Objects

Table 3. An example of mapping in the PetroGrapher system.

Ontology Implementation Level
Concept:
Microscopic

Presentation Unit
MicroscopicWindow

Attributes:
Gravel: real, ranged [0.0 – 100.00]

Edit Box

Values:
GrainSize: string(20), one of [gravel,
very coarse sand, coarse sand,
medium sand, fine sand, very fine
sand, silt, clay]

List of values option is represented in
the Combination Box.

The concept “microscopic” (as a PU), and its associated attributes and values are
shown in Figure 1.

Fig. 1.Presentation unit for the concept Microscopic and its attributes.

The positional association between a concept and its attributes is sometimes not so
obvious. The module PointCounter, which is the most complex module of
PetroGrapher system, shows some problems related with this. The PointCounter
interface was developed to allow the user to select, visualise and qualify a large set of
distinct (because they belong to different classes) objects of the ontology (minerals).
Each mineral, as a concept, is displayed in a PU. However, the large amount of
elements in the screen and the big number of properties to be defined made the
interface design task complex to perform. Four full versions of the software were
developed and systematically refused by the testing group. The software failed in
being considered as having “natural usage” due to long paths to achieve the goal.
Figure 2 is a screen snapshot of the current version of the system, which was
approved by the testing group (including the reservoir rock interpretation expert, four
of his assistants and five professional petrographers). In the user interface generation,
visual elements are mapped onto appropriate interaction objects by means of selection
rules which take into account properties of attributes such as type, range and number
of values.
The user interface should support the fulfillment of a user’s tasks by providing easy to
use and to learn ways for system interactions. Producing an easy interface consists in
mapping the domain knowledge structure (which is familiar and natural for the user)
into interface elements. Moreover, it is also essential providing an appropriate
grouping and distribution of elements in the PU, in such way that these elements can
be coherently visualised. Attributes belonging to the same concept or relation are
implicitly grouped to reflect their association and they are shown or not in a view
depending on the context and the task goal.

Fig. 2. The current version of the Point Counter interface.

Class and subclass
selection

Attributes are
associated to the
concept position

5 Conclusion

Our experience in mapping knowledge models to interface issues, so that the
system keeps user-orientation, lead us to the main objective of this paper, that is, to
design a general model applicable to CommonKADS-like KBSs at least.
When producing an interface design from ontological definitions in the knowledge
model, two main difficulties can be recognized. First, managing different kinds of
concepts or relationships, with diverse semantic meaning that should be represented
in the interface through distinct interface elements. Second, defining how to group
and place these elements into the interface, since the spatial relation among attributes
or concepts may not be clear enough (from users’ perspectives) in the knowledge
model.
The approach presented here for mapping ontology elements onto interface objects
has shown to be a useful strategy to increase interface development efficiency. In our
project, the strategy decreased the number of sections to approve a new interface
model, and reduced the rework of defining new interface models. When developing
an interface from scratch, it used to be necessary 4-5 interaction sessions with the test
group to approve the new software interface module. Here, a module of medium
complexity is considered, with less than 5 concepts and less than 30 attributes
involved in the interface. Complex interfaces objects such as Point Counter, with 130
objects to be selected and qualified, can take 10 sessions and 3 interface versions to
be approved or even never be fully approved. It became clear that developing the
interface under the user point of view provides better familiarity and satisfaction to
the user.
Designing interfaces by using the domain ontology reinforces the principle of
structure-preserving design (i.e., the content and domain structure elicited in the
acquisition phase are maintained and can be easily recognized through each level of
KBS development, from the analysis stage in the knowledge level to the
implementation level). The advantages in terms of modularity and maintenance are
evident:

1. There is a standard way to develop and maintain user interfaces.
2. It is possible to reuse user interface design, minimising efforts in designing new

interfaces in the same domain (or in any other domain with similar domain
ontology) from scratch.

3. Any expansion in the knowledge base, even if it includes new system
functionalities, is easily absorbed by the system designer.

4. The system has an homogeneous way of dealing with distinct kind of
information: concepts in the ontology, interaction objects and inferred objects.

5. Including or excluding elements of the domain can be reflected in the interface
without side effects.

The approach presented here can help KBS developers in the definition approval of
some interface standards in the context of a software project. Provided that interface
design is one of the most complex and time -consuming activities in the software
development process, this approach can reduce the overall resource applied in a KBS
project.

Acknowledgements

This project is supported by FINEP/CTPETRO Brazilian program. The fourth author
is supported by the Séneca Foundation, Coordination Centre for Research, through the
Séneca Program(FPI).

References

[1] Abel, M. (2001) Estudo da pericia em petrografia sedimentar e sua importância para
a engenharia de conhecimento, Doctoral Thesis, in Programa de PG em
Computação/UFRGS, 239 p., Porto Alegre

[2] Abel, M., Castilho, J.M.V., Campbell, J. (1998) Analysis of expertise for
implementing geological expert systems. World Conference in Expert Systems,
Mexico City, Mexico.

[3] Abel, M., Reategui, E.B., Castilho, J.M.V. (1996) Using case-based reasoning in a
system that supports petrographic analysis. In B. Braunschweig and B.Bremdal
(Eds), Artificial Intelligence in Petroleum Industry, 159-172, Paris, France.

[4] Bullinger, H.J., Fähnrich, K.P., Weisbecker, A. (1996) GENIUS: Generating
Software ergonomic User Interfaces. International Journal of Human-Computer
Studies, 115-144.

[5] Duineveld, A.J., Stoter, R., Weiden, M.R., Kenepa, B., & Benjamins, V.R. (2000).
WonderTools? A comparative study of ontological engineering tools. International
Journal of Human-Computer Studies 52:1111-1133.

[6] Fernández, M., Gómez-Pérez, A., Pazos, J., & Pazos, A. (1999) Building a chemical
ontology using methontology and the ontology desing environment. IEEE Intelligent
Systems, 37-46.

[7] Fernández-Breis, J.T., Martínez-Béjar, R. (2000) A Cooperative Tool for Facilitating
Knowledge Management. Expert Systems with Applications 18(4)_315-330.

[8] Gómez-Pérez, A., Benjamins, V.R. (1999) Overview of knowledge sharing and reuse
components: Ontologies and problem-solving methods, in International Joint
Conference on Artificial Intelligence, Workshop on Ontologies and Problem-Solving
Methods, Stockholm, Sweden.

[9] Gruber, T.R. (1993) A translation approach to portable ontology specifications.
Knowledge Acquisition 5:199-220.

[10] Martínez-Béjar, R., Ibañez-Cruz, F., Compton, P., Fernández-Breis, J.T., De las
Heras-González, M. (2001) Integrating Ripple Down Rules with Ontologies in an
Oncology Domain. Lecture Notes in Computer Science 2101:324-327.

[11] Martínez-Béjar, R., Ibañez-Cruz, F., Compton, P., Mihn Cao, T. (2001) An easy
maintenance, reusable approach for building Knowledge-Based Systems. Expert
Systems with Applications 20(2):153-162.

[12] Mizoguchi, R., Kozaki, K., Sano, T., Kitamura, Y. (2000). Construction and
Deployment of a Plant Ontology. In Proceedings of European Knowledge
Acquisition Workshop, 113-128.

[13] Pinto, H.S., & Martins, J.P. (2001). Ontology Integration: How to perform the
Process. In Proceedings of International Joint Conference on Artificial Intelligence,
Seattle, Washington, USA.

[14] Schreiber, G. (Editor) (1999) Knowledge Engineering and Management: The
CommonKADS Methodology. Bradford Books, London, England.

[15] Van Heijst,G. Schreiber, A.T. Wielinga, B.J. (1997) Using explicit ontologies in
KBS development’. International Journal of Human-Computer Studies, 45, 183-292.

