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Abstract. In this paper we describe a closed-loop functional neuroelec-
trical stimulation (FNS) system based on an Artificial Neural Network
controller to regulate hand grasp movements of patients with quadriple-
gia. Using an Artificial Neural Network (ANN) as the kernel of the feed-
back control system makes it possible to generate FNS stimulation pat-
terns for nerves that are similar to the corresponding axonal stimuli gen-
erated by a biologic system. Here, we describe the application of an ANN
already investigated for neuromuscular stimulation regarding the use in
FNS: FlexNet. FlexNet requires little training time and show good gen-
eralization behaviour. It can cope with nonlinearities and react flexible in
new situations by producing adequate output. Due to its small size it is
suitable for an implementation in real time. After a short introduction to
the scheme of the feedback control system developed during the GRIP-
project and the used techniques for axonal stimulation we take a closer
look on the ANN controller. We show the results of our investigations
for data sets obtained during in vivo experiments in pigs.

1 Introduction

The aim of the GRIP1-project (InteGRated System for the NeuroelectrIc Con-
trol of GrasP in Disabled Persons) is to develop a feedback control system to
regulate hand grasp movements of patients with quadriplegia. An overview of
recent research on the field of grasp control is given in [1].

A system for grasp control must be able to initiate movement of the paralyzed
hand. Designing a system of functional neuroelectrical stimulation (FNS) it is
necessary to use a controller that can provide various neuroelectric stimulation
patterns which are similar to the corresponding axonal stimuli in biological sys-
tems. This prevents the muscles from clenching up and offers the biggest possible
1 The GRIP-project is granted by the European Community under ESPRIT IV

RLTR Project #26322. Find the latest information about the GRIP-project on
http://www-ti.informatik.uni-tuebingen.de/ grip/.
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freedom of movements to the quadriplegic. Further, the patient asks for short
training time to start off with the system in order to regenerate muscle structure
fast. In the following time, the system must learn to change its behaviour with
the growing abilities of the patient during usage.

Due to these conditions, we propose a system for grasp control based on an
Artificial Neural Network (ANN). An overview of the system is shown in figure 1.
A detailed description about the system is given in [2].
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Fig. 1. Scheme of the closed-loop system for grasp control

The patient initiates a grasp movement of a certain strength. The ANN con-
troller receives information of the desired grasp force and generates appropriate
neuroelectrical stimuli signals. The signals are sent to a subcutaneous receiver
unit which is connected to a cuff electrode (see below). Using these electrodes
the unit implies stimulation to the axons leading to muscles in the forearm.
The resulting movement of the digits and the force applied to the surface of the
hand is recorded by sensors of a data glove worn by the patient. The position
of the fingers and the forces provide important feedback information which are
returned to the ANN controller to regulate its output.

In the past, different kinds of feedback control algorithms have been used.
Find a comparison of these algorithms in [3]. Using the grasp control system
based on a trainable ANN controller instead of a standard look up table (LUT)
controller [4] has several advantages. Such a system can be expected to easily be
adapted to the individual needs of different patients and their changing abilities.
During prelimanary investigations, we’ve identified an ANN able to handle the
requirements for neuromuscular stimulation: FlexNet [5]. In this paper we focus
on FlexNet as the ANN for the proposed closed-loop control of the paralyzed
hand investigating its abilities for neuroelectrical stimulation.
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After presenting the receiver unit and the cuff electrode, we concentrate on
an ANN based controller using FlexNet for closed loop control of a pig’s limb.

2 Functional Neuroeletrcial Stimulation Using Cuff
Electrode

The principle of the subcutaneous receiver unit and the cuff electrode which are
used in the GRIP-project is shown in figure 2.
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Fig. 2. Implementation scheme for the subcutaneous receiver unit and the cuff elec-
trodes in the forearm.

Stimulation patterns generated by the ANN controller are broadcasted to
the subcutaneous receiver unit. The data is spread to up to eight cuff electrodes.
They enclose axon bundles leading to the major muscles of the forearm which
are responsible for basic grasp movements.

The cuff electrode was developed by the Fraunhofer Institut für Biomedi-
zinische Technik (IBMT), St.Ingbert (Germany). This multipolar electrode for
the connection with the peripheral nerve is manufactured of flexible polyimide.
An attached programmable 1 channel stimulator chip, developed by the Centre
Nacional de Microelectronica (CNM), Barcelona (Spain), works as a receiver
unit. For more details about the cuff electrode please refer to [6] [7].

3 Experimental Set Up

In order to validate the approach, an animal model has been choosen. Since the
pig has similiar anatomic conditions compared with humans (especially for the
nerve sizes), it was designated for in vivo experiments. The experimental set up
is shown in figure 3.

In the animal model, the patient’s intent is replaced by an arbitrary angle
trajectory which can be defined by an user. Also, instead of the data glove with
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Fig. 3. Scheme of the experimental set up for the closed loop control of a pig’s limb.

its sensors for angles and force, only the angle of the rotation axis is measured.
Thus, the given trajectory describes an angle dependent on time. Nevertheless,
the actual angle position is given to the control software, which is in fact the
ANN, and thus close the loop for the control of the pig’s limb.

4 Data Set

After calibrating the input data channels, the animal limb is stimulated in a
standardized way. During subsequent stimulation trials, feedback data from the
angle sensor has been recorded. One stimulation trial takes 27 seconds. Each

Fig. 4. Data acquisition: The corresponding nerve is stimulated with differtn pulswidth
(PW) over 29 seconds (pyramid curve). The corresponding angles are shown for 7
different trials.
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trial is repeated several times using exactly the same stimulation ramp (pyramid
ramp, see figure 4) and well defined rest periods between the trials in order to
reduce fatigue effects. The stimulation ramp varied the pulswidth from 0 to
300 µsec, whereas the stimulation frequency (25 Hz) as well as the stimulation
amplitude (270 µA) was kept constant.

This leads to a collection of recruitment data as shown by 7 trials in figure 4.
Fatigue and other nonlinear effects that appear due to the individual animal be-
haviour are responsible for the different feedback response curves of consecutive
trials. In order not to avoid pertubations of the biological systems, only a small
numebr of trials can be performed.

Finally after the collection of sufficient data sets, the data vectors needed for
the ANN training are generated from the recruitment data.

5 Training of the ANN Based Controller

For the position control of the pig’s limb (angle), the controller needs the fol-
lowing input information: the arbitrary trajectory as desired target values and
the feedback information about the actual limb position. The FlexNet calculates
the corresponding output for the stimuli (see figure 5).

Fig. 5. Scheme for the inputs and outputs of the FlexNet. In this case, only the output
for the pulswidth (PW) is used.

Up to now, the ANN was trained to constantly update one of the pulswidth
(PW) of stimulation while the remaining parameters (Amplitude AM = 270 µA,
Frequency FQ = 25 Hz) were kept constant.

As already mentioned above, in an earlier study [5], FlexNet [8] [9] has been
identifed as suitable for the use in neuromuscular stimulation. Thus, it was used
here as well for calculating the corresponding stimuli for the neuroelectrical
stimulation.
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FlexNet is a flexible, easy to use neural network training and network con-
struction algorithm. Starting with input and output neuron layers only, the
network structure is defined incrementally during the training process. FlexNet
determines the best suited position/layers for competing groups of candidate
neurons in the current network before adding them. As this allows for new neu-
rons being added to new, existing or older layers, FlexNet networks not neces-
sarily grow as deep and narrow as networks constructed by Cascade Correlation.
It has been shown that FlexNet outperforms variants of Cascade Correlation on
many problems, is only little sensitive to herd effects but usually consumes more
computation time.

For the training of FlexNet, 4 out of 7 trials shown in figure 4 has been
randomly choosen as training data set. For each time step t, a vector containing
the desired target value and the actual target positon as input as well as the
desired pulswidth as output, has been computed. The actual target position
was read out of a look up table representing the reaction of the limb for the
corresponding PW stimuli. Thus, the training data set consists of 2700 vectors.
The remaining 3 trials were used for validation of the trained net.

6 Results

After a training time of less than 10 min the training of the FlexNet was com-
pleted performing less than 1200 training epoches. The resulting FlexNet had
16 hidden neurons and showed a training error of less than 5 perecent absolute
averaged error. The evolution of the training error is shown in figure 6. The net
structure was 2-2-2-2-2-8-1 with a total number of 155 weights.

Fig. 6. Evolution of training error for FlexNet.
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Based on the data described above and the trained FlexNet, a simulated
closed loop control experiment was performed. A look-up table (LUT) filled
with values from the first half of trial 20 7 in figure 4 was used instead of a real
animal. In order to simulate the time delay for the reaction of the animal, the
LUT was implemented on a second computer. Thus the communication time
between the computers represents the reaction time between the stimuli and the
movement of the pig’s limb.

Fig. 7. Result for a closed loop simulation. In the first half of the curve, the obtained
angle values follows very good the target values, whereas in the second half the error
grows. This was due to the used look up table simulating the feedback position of the
pig’s limb.

The simulation of the closed loop control resulted in good control perfor-
mance as visualized in figure 7. In the first half of the curves, the resulting
feedback position follows very good the target postion. In the second half, the
result isn’t as good as in the first half. This is due to the fact, that the LUT in-
corporated only information from the first half of trial 20 7. Thus, the behaviour
of the limb for the movement into one direction corresponding to a certain stim-
uli doesn’t fit with its behaviour for the opposite direction and the same stimuli.
This must be taken into account in further experiments. Similiar results were
obtained for both remaining trails randomly designated as validation trials.

Taking into account, that the data set reflects a quite unstable biological
system in terms of identical response for the same stimuli (refer figure 4), the
control performs very good as shown in figure 7. It’s worth to note, that the
ANN always try to use the lowest PW possible to obtain the desired target
value which will be advantageous regarding fatigue effects.
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7 Conclusion

In this paper we’ve described a system for restoration of lost hand function of
quadriplegic patients. We focused on the artificial neural net based controller for
closed loop control. The whole system was tested using a data set obtained by
functional neuroelectric stimulation controling the angle of a pig’s limb. After
training, the obtained FlexNet perform an averaged absolute error of less than 5
percent. Using FlexNet as ANN for the controller, simulation of the closed loop
control scheme basing on the data set of a pig’s limb showed good performace.

To conlcude, basing on these results, experiments for in vivo closed loop
control using the pig model will be done. Reflecting the results obtained by the
simulation encourage the use of FlexNet for this purpose.
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