
 1

A GRASP algorithm for Clustering

J.R. Cano1, O. Cordón2, F. Herrera2, and L. Sánchez3

1Dept. of Software Engineering
University of Huelva, 21071 La Rabida (Huelva), Spain

Jose.cano@diesia.uhu.es
2 Dept. of Computer Science and A.I.

University of Granada, 18071-Granada, Spain
{ocordon,herrera}@decsai.ugr.es

3 Dept. of Computer Science
University of Oviedo, Oviedo, Spain

Abstract. We present a new approach for Cluster Analysis based on a Greedy
Randomized Adaptive Search Procedure (GRASP), with the objective of
overcoming the convergence to a local solution. It uses a probabilistic greedy
Kaufman initialization for getting initial solutions and K-Means algorithm as a
local search algorithm. We compare it with some typical initialization methods:
Random, Forgy, Macqueen and Kaufman. The new approach obtains high
quality solutions for the benchmark problems.

1. Introduction

Clustering is a basic process to human understanding. The grouping of related objects
can be found such diverse fields as statistics, economics, physics, psychology,
biology, pattern recognition, engineering, and marketing [3,5].

The Clustering problem involves partitioning a set of entities into a given number
of subsets and finding the location of a centre for each subset in such a way that a
dissimilarity measure between entities and centres is minimized. K-Means is one of
the most known clustering algorithms. Although it is known for its robustness, it can
fall in local optimal solutions easily. It is widely reported that the K-Means algorithm
suffers from initial starting conditions effects: initial clustering and instance order as
shown in [4].

In this contribution, we propose a Greedy Randomized Adaptive Search Procedure
(GRASP) [2] applied to the Clustering problem, using K-Means as local search
procedure. Our algorithm tries to eliminate the classical problem of the K-Means
algorithm, hold up solutions in local optima, by permitting a higher exploration and
exploitation of the search space, with a medium computational cost.

In order to do that, the paper is organized as follows. Section 2 introduces a
background on clustering, K-means and initialization approaches. Section 3 presents

2

the GRASP approach to clustering. Section 4 shows the experiments and their
analysis, and finally, Section 5 points out some concluding remarks.

2. Background

A common problem in cluster analysis is partitioning objects into a fixed number of
groups to optimize an objective function-based clustering. These objects are measured
along several features that characterize them. Patterns can be viewed as vectors in a
high dimensional space, where each dimension corresponds to one feature.

In this section we introduce the formalization of clustering, the K-Means
algorithms, and four initialization approaches.

2.1. Clustering Problem

The clustering problem can be formalized as follows [1]: Considering N entities ei,
each with an associated weight wi (i=1,..,N), we search for k centres cj (j=1,...,k)
minimizing:

where d(ei,cj) measures the dissimilarity between ei and cj. In our case, where the
entities are described by their co-ordinates in ℜm , d(ei,cj) is the Euclidean distance.
Basically, clustering is a combinatorial optimization problem.
Let
 Q be set containing all objects to be clustered,
 C be the set of all feasible clustering of Q,
 J: C → ℜ be the internal clustering criterion,
then the problem involves

Minimize J(c) subject to c ∈ C.

The complexity of the clustering problem is given by different factors:

1. The clustering is an NP-HARD problem. Therefore, an exhaustive approach is
not practicable due to the exponential number of the potential partitions of the
input data. The number of possible partitions of N elements into k clusters is
given by

2. The clustering complexity grows if the number of groups is unknown. In such a
case he number of solutions becomes:

() () .)(1
!

1,
1

j
k

Nk N
k

j

k

j

jk

∑∏
=

−

−=

()()jii

N

i
j

k cedwminccf ,),...,(
1

1 ∑
=

=

3

3. It is very difficult to translate the concept of ‘similarity’ into a unique
mathematical model, but this depends on the clustering goal.

Due to these reasons, trying to get a global optimal solution by means of an
efficient and robust method is difficult. Thus, there is a considerable interest in the
design of new heuristics to solve large-sized practical clustering problems.

2.2. K-Means Algorithm

K-means evaluates a set of k selected objects, which are considered representatives
for the k clusters to be found within the source set of N objects. Given the set of
representative objects, the remaining objects are assigned to the nearest representative
one, using a chosen distance measure.

The philosophy is that a better set of clusters is obtained when the k representative
objects are more centrally located in the cluster they define. For this reason, a suitable
objective function to be minimized is the sum of the distances from the respective
centers to all the other objects of the same cluster. The function value depends on the
current partition of the database {C1,...,Ck}:

with πk(Ω) being the set of all partitions of the database Ω={e1,...,eN} in k non-empty
clusters. Each instance ei of the N instances in the database Ω is an m-dimensional
vector.

The K-Means algorithm finds locally optimal solutions using the Euclidean
distance in the clustering criterion. This criterion is sometimes referred to as square-
error criterion. Therefore, it follows that:

where k is the number of clusters, k i the number of objects of the cluster i, eij is the
j-th object of the i-th cluster and ci is the centroid of the i-th cluster defined as:

The pseudo-code for this algorithm is:

1. Select an initial partition of the database in k clusters {C1,...,Ck}
2. Calculate cluster centroids, using the expression of its definition.

() () .)(1
!
1,

11

j
i

Nk N
i

j

i

j

jik

i
∑∑∏

=

−

=

−=

() ℜ→Ω∏k
J :

{ }() ∑∑
= =

−=
k

i

k

j
iijk

i

ceCCJ
1 1

1 ,...,

∑
=

==
ik

j
ij

i

i kie
k

c
1

,...,1,1

4

3. For every ei in the database and following the instance order DO
• Reassign instance ei to its closest cluster centroid. Hence, ei ∈ Cs is moved to

Ct if ||ei – ct|| ≤ ||ei – cs|| for all t=1,...,k, t≠s.
• Recalculate centroids for those clusters.

4. If cluster membership is stabilized then stop else go to step 3 .

The K-Means algorithm has the drawbacks:

• It assumes that the number of clusters k in the database is known, which is
not necessarily true.

• It is especially sensitive to initial starting conditions: initial clusters and
instance order.

• It converges finitely to a local minima, defined by a deterministic mapping
from the initial conditions to the final solution.

2.3. Initialization Approaches

The second problem, sensitivity to initial conditions, may be mitigated using different
values of k , some instance orders and different initialization methods.

In this section we describe four initialization approaches [4]. Each one generates k
initial clusters following some kind of heuristic and produces a different K-Means
response.

These four classical methods are:

− Random: Divides the database into a partition of K randomly selected clusters.
− Forgy: k instances of the database (seeds) are chosen at random and the rest of the

instances are assigned to the cluster represented by the nearest seed.
− Macqueen: k instances of the database (seeds) are chosen at random. Following the

instance order, the rest of the instances are assigned to the cluster with the nearest
centroid. After each assignment, a recalculation of the centroid has to be carried
out.

− Kaufman: The initial clustering is obtained by the sucessive selection of
representative instances. The first representative is chosen to be the most centrally
located instance in the database. The rest of representative instances are selected
according to the heuristic rule of choosing the instances that promise to have
around them a higher number of the rest of instances and that are located as far as
possible from the previously determinated ones.

Differences between these initialization methods are:

- Random and Forgy generate an initial partition independently of the instance
order.

- Macqueen generates an initial partition that depends on the instance order.
- Kaufman is the only deterministic one, based on a greedy approach.

5

3. GRASP Approach to the Clustering Problem

In this section we introduce the GRASP approach and present its application to
clustering.

3. 1. Greedy Randomized Adaptive Search Procedure (GRASP)

A generic GRASP pseudo-code is shown as follows [2]:

Procedure grasp()
 InputInstance();
 For GRASP stopping criterion not satisfied
 ConstructGreedyRandomizedSolution(Solution);
 LocalSearch(Solution);
 UpdateSolution(Solution,BestSolutionFound);
 Rof
 Return(BestSolutionFound);
End grasp;

In the construction phase, a feasible solution is iteratively constructed, choosing
one element at a time. At each construction algorithm iteration, the choice of the next
element to be added is determined by ordering all elements in a candidate list with
respect to a greedy selection function. This function measures the benefit of selecting
each element. The probabilistic component of a GRASP is characterized by randomly
choosing one of the best candidates in the list, but not necessarily the top one. The list
of the best candidates is called the restricted candidate list (RCL) and has dimension l.
This choice technique allows different solutions to be obtained at each GRASP
iteration, but does not necessarily compromise the power of the adaptive greedy
component of the method.

The GRASP construction phase pseudo-code is:

Procedure ConstructGreedyRandomizedSolution(Solution)
 Solution={};
 For Solution construction not done
 MakeRCL(RCL);
 s = SelectElementAtRandom(RCL);
 Solution = Solution ∪ {s};
 AdaptGreedyFunction(s);
 Rof
End ConstructGreedyRandomizedSolution;

The solutions generated by a GRASP construction algorithm are not guaranteed to
be locally optimal with respect to simple neighborhood solutions. Hence, it is almost
always benefitial to apply a local search to attempt to improve each constructed
solution. A local search algorithm works in an iterative fashion by sucessively
replacing the current solution by a better solution in the neighborhood of the current

6

one. The key to success for a local search algorithm involves a suitable choice for a
neighborhood structure, efficient neighborhood search techniques, and the starting
solution.

Finally, the GRASP local search phase pseudo-code is shown:

Procedure Local (P,N(P),s)
 For s not locally optimal
 Find a better solution t ∈ N(s);
 Let s=t;
 Rof
 Return (s as local optimal for P)
End local

with P being a problem (clustering in our case), N(P) being a mechanism to obtain
neighbours for P, and s being a solution for P .

3.2. A proposal on GRASP for the Clustering Problem

Following the generic GRASP structure, it is easy to adapt the algorithm to the
clustering problem using the greedy Kaufman method.

The stopping criterion is defined in terms of the maximum number of iterations,
whilst the K-Means is introduced as a local search algorithm.

To construct the greedy randomized solution, the Kaufman initialization [3] is
taken as a base, because it is a greedy deterministic initialitation algorithm. Using the
Kaufman criterion, the RCL list is generated by the most promising objects for each
center of the solution and one of those candidates is randomly selected.

A generic pseudo-code of the GRASP construction phase for clustering is:

Step 1. Select the most centrally located instance as the first seed.
Step 2. FOR every non selected instance ei DO
 Step 2.1.FOR every non selected instance ej DO

 Calc Cji = max(Dj – dji, 0) where dji =||ei -ej ||
 and Dj = minsdsj being s one of the

 selected seeds
 Step 2.2. Calculate the gain of selecting ei

 by Σj Cji
Step 3. MakeRCL(RCL) by selecting the l instances ei which maximizes Σj Cji
Step 4. SelectElementAtRandom(RCL)
Step 5. If there are k selected seeds THEN stop ELSE go to Step 2.
Step 6. For having a clustering assign each nonselected instance to the cluster

 represented by the nearest seed.

When the k objects have been taken, the local search (K-Means in this case) is
applied taking the clustering obtained as initialization. Then, we compare the local
solution cost obtained with the best solution cost found so far, and we take the best.
This process continues until all the iterations have been done.

7

The use of K-Means offers an efficient and low computational cost method to
obtain relatively good solutions, but converges to a local minimum. The GRASP
construction phase corrects this problem, performing a wide space exploration search.
Note that our algorithm constitutes a new initialization method for K-Means, which
better explores the search space.

4. Experimental Results

Next, we present the sample process, the results obtained in our experiments, and an
analysis.

4.1. Sampling Process

The performance of our algorithm is studied with various instance sets, trying to get
conclusions independent of the problem. Four real-world databases are considered:

• Glass, which has 214 instances, 9 attributes and 7 clusters that can be
grouped in 2 bigger classes.

• Titanic, which has 2200 instances, 4 attributes and 2 classes.
• Segmentation Image, which has 2310 instances, 19 attributes and 7 classes.
• Pima, which has 768 instances, 8 attributes and 2 classes.

Since the K-Means algorithm strongly depends on initial conditions, this problem
of initial starting conditions is mitigated using different values of k and some instance
orders.

The following initial number of clusters have been considered:

- Glass: k= 7, 10
- Titanic: k= 4, 10
- Segmentation Image: k= 6, 12
- Pima: k= 6, 10

First, we applied three K-Means variants (each one with its own initialization:
Random, Forgy and Macqueen). The sampling process followed is based on the
combination of four initial partitions and four instance orders (see [4]) and taking the
best result of those sixteen runs.

This process is executed ten times and the following values are taken: arithmetic
mean, standard deviation and the best solution.

On the other hand, the evaluation of K-Means with Kaufman initialization has been
done using 10 random instance orders of each problem. Although Kaufman
initialization seems to be a completely deterministic initialization method, this is not
completely true. When one instance has the same Euclidean distance to two cluster
centers, this instance will be associated to the first of them. If we have some instances
in this situation, their order will modify the evolution of the k centers.

8

The proposed GRASP algorithm is studied using sixteen iterations in each
execution (running sixteen K-means). Ten executions of the GRASP algorithm are
made, getting the arithmetic mean, the standard deviation and the best solution from
those executions. The RCL size used is fifteen (l = 15), which is flexible enough to
obtained optimal solutions due the database sizes. Therefore, in order to compare
GRASP evaluation with the remaining K-Means initialization methods, we use the
same number of K-Means runs than GRASP iterations for every execution of
Random, Forgy and Macqueen initialization methods.

4.2. Results

Experimental results are presented in Tables 1-8.

Table 1. Glass results, k=7

Arithmetic
mean

Standard
Deviation

Best
Solution

Random 206.632 0.704 205.307
Forgy 206.493 0.723 205.889
Macq. 206.635 0.676 205.889

Kaufm. 211.658 0 211.158
GRASP 205.239 0.486 204.992

Table 2. Glass results, k=10

Arithmetic
mean

Standard
Deviation

Best
Solution

Random 179.042 2.670 175.945
Forgy 176.710 1.205 176.044
Macq. 177.144 1.389 176.044

Kaufm. 188.691 0 188.691
GRASP 176.058 0.089 175.945

Table 3. Titanic results, k=4

Arithmetic
mean

Standard
Deviation

Best
Solution

Random 1110.034 19.662 1080.426
Forgy 1437.635 297.603 1282.327
Macq. 1442.327 301.718 1282.327

Kaufm. 1170.012 0 1170.012
GRASP 1071.458 1.368 1070.661

Table 4. Titanic results, k=10

Arithmetic
mean

Standard
Deviation

Best
Solution

Random 880.530 71.877 670.166
Forgy 992.681 82.042 930.914
Macq. 991.914 84.564 930.914

Kaufm. 340.696 0 340.696
GRASP 329.234 4.196 327.234

9

Table 5. Segmentation Image results, k=6

Arithmetic
mean

Standard
Deviation

Best
Solution

Random 158581.932 470.346 158141.047
Forgy 158261.497 626.579 157923.297
Macq. 158334.78 321.169 157923.297

Kaufm. 159233.335 0.0178 159233.297
GRASP 158246.504 312.505 157917.547

Table 6. Segmentation Image results, k=12

Arithmetic
mean

Standard
Deviation

Best
Solution

Random 117819.845 3263.117 114229.797
Forgy 114244.441 7.570 114237.953
Macq. 115645.357 8.724 114237.842

Kaufm. 114248.172 0 114248.172
GRASP 114221.817 1.066 114220.75

Table 7. Pima results, k=6

Arithmetic
mean

Standard
Deviation

Best
Solution

Random 29415.066 15.681 29403.762
Forgy 29426.369 14.519 29403.762
Macq. 29428.447 15.117 29403.762

Kaufm. 30729.2 0.013 30729.195
GRASP 29403.763 0.001 29403.762

Table 8. Pima results, k=10

Arithmetic
mean

Standard
Deviation

Best
Solution

Random 24287.956 134.991 24120.801
Forgy 24136.125 26.718 24117.748
Macq. 24137.881 23.687 24117.748

Kaufm. 24340.811 0 24340.811
GRASP 24127.770 7.929 24117.748

 4.3. Analysis

Comparing results, we notice that Forgy and Macqueen usually give very similar
results. They seem to have the same behaviour, keeping the same or similar local
minima. Their results improve those given by Random initialization, with any
number of clusters, except in the Titanic database. Thus, both Forgy and Macqueen
initialization respond better than Random, with this difference more significant when
k grows.

It is clear that Kaufman initialization by itself does not obtain the best results
compared to the classical initialization methods. We conclude that the heuristic used
in Kaufman initialization needs a more flexible centroid selection to reach this global
optimum.

10

Finally, we compare the results obtained from GRASP with the remaining K-
Means initialization methods. As said, this comparison is feasible because we are
comparing ten GRASP runs versus ten sampling processes runs (16 K-Means runs
with different initialization approaches). This comparison is based on effectiveness
and robustness:

• If we study each table we notice that GRASP gets the best results in every
problem for all initial numbers of clusters k . GRASP is the most effective
algorithm, because it is doing a better exploration of the search space than K-
Means using Kaufman initialization can do by itself.

• On the other hand, GRASP presents similar robustness (small values for the
standard deviation) to Kaufman K-Means in most of the cases, and better
robustness than the remaining approaches.

Although GRASP is computationally a little more demanding than the remaining
K-Means initializations with the same number of runs/iterations (due to the
computational time needed by the construction phase), GRASP induces the K-Means
algorithm to present a better performance and a more robust behaviour.

5. Concluding Remarks

The K-Means algorithm suffers from its dependence on initial conditions which under
certain conditions leads to a local minimum. We present a GRASP algorithm based
on Kaufman initialization to avoid this drawback.

 The GRASP algorithm has been empirically compared with four classical
initialization methods (Random, Forgy, Macqueen and Kaufman) being the most
effective algorithm.

References

1. M.R. Anderberg, Cluster Analysis and Applications, Academic Press, 1973.
2. T.A. Feo and M.G.C. Resende, Greedy Randomized Adaptive Search Procedure,

Journal of Global Optimization 2 (1995) 1-27.
3. L. Kaufman and P.J. Rousseeuw, Finding Groups in Data. An Introduction to

Cluster Analysis. Wiley, 1990.
4. J.M. Peña, J.A. Lozano, and P. Larrañaga, An empirical comparison of four

initialization methods for the K-Means algorithm. Pattern Recognition Letters 20
(1999) 1027-1040.

5. S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic Press, 1999.

