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Abstract. The ability to establish a mapping between the information

of two di�erent images and estimate the geometrical transform it is sup-

posed it has been applied, are two open problems in computer vision.

Indeed, it is a crucial task for a wide range of applications. In this work

we try to take advantage of the information we can infer from the skele-

ton of an image. Then, we de�ne a global optimization function holding

both problems. We face such a complex optimization problem using a

well known metaheuristic: iterated local search.

1 Introduction

Image registration is a fundamental task in image processing used to �nding
a correspondence (or transformation) among two or more pictures taken un-
der di�erent conditions: at di�erent times, using di�erent sensors, from di�erent
viewpoints, or a combination of them. Over the years, registration have been
applied to a broad range of situations from remote sensing to medical images or

arti�cial vision and di�erent techniques have been independently studied result-
ing in a large body of research (in [5], a clear classi�cation of di�erent registration
techniques and applications can be found).

In the last few years, a new family of search and optimization algorithms
have arised based on extending basic heuristic methods by including them into
an iterative framework augmenting its explorattion capabilities. These group of
advanced approximate algorithms have received the name of metaheuristics and
a deep sumary on the di�erent ones existing is to be found in [3].

In recent literature, we can �nd di�erent aproaches to the matching and
registration problems ([15], [10]) from the metaheuristics point of view. In this
work, we try to exploit the bene�ts of applying the Iterated Local Search (ILS)
metaheuristic [13] to solve registration and our contributions are related to
the fact of jointly solving matching and registration transform problems using
skeleton derived information.
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To do so, in section 2 we present the concept of skeleton and medial axis
transform in the �eld of shape analysis in computer vision and the way we can
use them to generate an object partition. In section 3 we give a brief overview
of the concept of image registration and two important methods to understand
our work. Next, section 4 shows the way we can apply ILS to the registration
problem. In section 5,we expose di�erent results we have achieved applying our
method. Finally,in section 6 we review the work we've done and future improve-
ments to be considered.

2 Shape analysis in computer vision: the medial axis

transform

2.1 Basics

The input to a typical image processing and analysis system is a gray-scale or
colour image of a scene containing the objects of interest. In order to understand
the contents of the scene, it is necessary to recognize the objects located in it.
The shape of the object is a binary image representing its extent. The shape can
be thought of as a silhouette of the object. There are many imaging applications
where image analysis can be reduced to the analysis of shapes (e.g. organs, cells,
machine parts, characters).

Classi�cation of shape analysis techniques can be done attending to di�erent
criteria and is beyond the scope of this paper. For an in depth discussion see [11]
where a review of a variety of methods is presented. We will focus on a special
shape description method: the skeleton and medial axis transform of an object.

Intuitively, the skeleton of an object is the set of points which are equidistant
from at least two points of the object boundary (there is a part of the skeleton
inside the object and another part outside, but we do not take into account the
latter part). The �rst attempts to a formal de�nition of the skeleton were due
to Blum [4] and Calabi [6]. Blum proposed the grass�re analogy: the skeleton
consists of the points where di�erent �refronts intersect, or quench points. He
also proposed another de�nition, widely used later: if one considers the elevation
surface (hypersurface in the 3D case) obtained from the distance transform of
the object, which for each point inside the object gives the distance to the closest
boundary point, the skeleton is the set of points for which there is a discontinuity
of the distance map derivative. As the closest boundary point, P , to an object
point, M , is known to be the orthogonal projection of M on the boundary, this
de�nition is obviously equivalent to the intuitive one. Indeed, since a point M
of the skeleton has at least two projections on the boundary, M is equidistant
to almost two boundary points.

In order to formalize the notion of skeleton, in [6] the problem is analyzed
from a topological point of view: the skeleton is de�ned as the set of the object
maximal disk (maximum balls in the 3D case) centers. He also proved that the
notions of quench points and maximal disk centers are equivalent.

Therefore, in the continuous case, the skeleton of an object is a set with
no thickness, that is to say a set that only contains balls of radius zero. The
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skeleton of a 2D object will look like a graph placed in the middle of the object
and composed of pieces of courbes, called skeleton branches.

The medial axis is de�ned as a set containing the skeleton points and the dis-
tance vectors joining each skeletal point to its closest boundary point. Therefore,
retrieving the object shape from its medial axis is straightforward. The medial
axis is a more complete representation of the object than the skeleton. Indeed,
objects with di�erent shapes can yield the same skeleton (if, as was said before,
we do not consider the part of the skeleton outside the object), and only the
medial axis will di�er and allow to distinguish between these objects.

Let us now introduce some notations. First, let X be a digital object. Its
medial axis is denoted: fSK(X);�SKg, where SK(X) is the skeleton of X and
� is the distance map of X (inside X) de�ned by:

ZZn �! IR+ ;M 7�! �(M) = d(M;X) = inf
P2X

d(M;P );

wth d being a metric, classically the euclidean distance. X denotes the comple-
ment of X , and �nally �SK is the restriction of � to SK(X). The distance map
for a digital object is usually computed by Euclidean Distance Transform (EDT)

methods [7].
The sets of closest background points to a object point M ,

Q
(M), is known

to be the set of projections of M (on the background). It is de�ned by:

M 7�!
Y

(M) = fP 2 X j d(M;P ) = �(M)g

As we said before, skeletal points are de�ned as centers of the object maximal
disks, so if an object pointM satis�es j

Q
(M)j � 2,M is the center of a maximal

ball, thus M is a skeletal point.

2.2 Shape characterization from the medial axis

Finally, let us look at skeletons from a structural point of view. As we stated
in [9] the skeleton of an object is formed by pieces of curves (2D and 3D
cases) and surfaces (3D case only) linked together by junctions. The pieces of
curves and surfaces which do not contain any junctions are called pure curves
and surfaces (therefore the connected components which remain when removing
junction elements from a skeleton are pure curves and surfaces). In the following,
we will refer to these pieces of skeleton by the expression skeleton parts. Finally
by frontier points we denote the points which end skeleton parts and are not in
contact with junction components (see Figure 1).

As the skeleton SK(X) of an object X is a thin set, it allows us to classify the
object topologically, thus allowing the study of the skeleton topology and there-
fore of the object topology. The topological classi�cation of SK(X), denoted
SKc(X), attaches to each point of the skeleton one of the following labels:

- Type F: Frontier Point - Type C: Pure Curve Point
- Type J: Junction Point - Type S: Pure Surface Point (3D case only)
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depending of which component does the current skeleton point belong to, re-
spectively Frontier, Junction, Pure Curve and Pure Surface.

Let us now briey recall the general idea of the n-D euclidean skeletonization
twofold process presented in [12] that we have been considered in this work:

1. Local characterization of skeletal points by the introduction of two measures
based on the Euclidean distance mapping.

2. Global topological reconstruction of the skeleton from two intermediate skele-
tons, one giving the adequate detail level, and the other giving the topology
to be preserved.

As an example, Figure 1 illustrates the fact that branches of the skeleton
of a 2D object are pure curves linked by junction components, and frontier
components are the ends of the skeleton branches which are not in contact with
a junction element.

Fig. 1. On the left, topologically characterized skeleton of a 2D object. Skeleton

branches (pure curves) are in yellow (or light gray), junction components in red (or

black) and frontier components in black. On the right, object partition.

From the previous labeled skeleton parts we are able to obtain an object
partition with region signi�cance. Each of these regions will be related to a
skeleton part. A well known skeleton based object partitioning method is skiz
(skeleton by inuence zones), which has been widely used. The skiz is obtained
through the following steps: 1) compute the object skeleton and label the skeleton
parts; 2) compute the distance map of the skeleton parts; 3) propagate the
skeleton parts labels to the object points using the previous distance map, i.e.,
attach to each object point the label of its closest skeleton point.

The medial axis of an object is a very compact and informative representation
of the object. To each skeletal point M we can attach the di�erent attributes
(the relative value of �(M), where � is the distance map of X ; or its topological
label: Type F, J, C or S).

From the skeleton parts labeling, we also infer a meaningful partition of
the object into regions, each of these regions being associated to one of the
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skeleton parts. So, now we have skeleton parts and associated object regions.
To each skeleton part P i

SK(X)
and object region Ri

X we can attach di�erent

attributes: i) P i
SK(X)

size compared to skeleton size; ii) variation of the distance

map along P i
SK(X)

; iii) Ri
X region size relative to the object size; iv) variation

of the curvature sign along P i
SK(X)

We have also characterized di�erent skeleton points: junctions can be de-
tected and labeled by a connected components extraction of type J pixels of
SKc(X). To each skeleton junction J i

SK(X)
we can attach di�erent attributes:

its order as de�ned by the number of skeleton parts which meet at junction
J iSK(X); the value of � at the junction J iSK(X) compared to the maximal value

of � in SK(X).
Finally, we have identi�ed frontier points in the skeleton. One possible

attribute related to these points is the relative value of �: The larger the value
of �, the smoother the curvature change at the boundary will be.

3 Image registration

3.1 De�nition

Image registration can be de�ned as a mapping between two images (I1 and I2)
both spatially and with respect to intensity:

I2(x; y; z; t) = g(I1(f(x; y; z; t))) (1)

We can usually �nd situations where intensity di�erence is inherent to scene
changes, and thus intensity transform estimation given by g is not necessary.
In this contribution, we will consider f represents an isometric transform, i.e.
rotation, translation and uniform scaling.

3.2 Image registration methods

Iterated Closest Point: The well known (ICP) method was proposed by Besl
and McKay [2], and later on extended in di�erent papers ( [16], [8]):

{ The point set P with Np points pi from the data shape and the model X
|with Nx supporting geometric primitives: points, lines, or triangles| are
given.

{ The iteration is initialized by setting P0 = P , the registration transform
by q0 = [1; 0; 0; 0; 0; 0; 0]t, and k = 0. Next four steps are applied until
convergence within a tolerance � > 0.

1. Compute the matching between the data (scene) and model points by
the closest assignament rule: Yk = C(Pk ; X)

2. Compute the registration: fk(P0; Yk)
3. Apply the registration: Pk+1 = fk(Pk)
4. Terminate iteration when the change in mean square error falls below �



6 Oscar Cord�on Garc��a et al.

The use of the algorithm includes di�erent advantages: i) it is independent of
the shape representation (it allows the use of CAD data without any preprocess-
ing, for instance); ii) no need of data smoothing when there are no outliers; iii)
no need of data derivatives; iv) the method can be generalized to n-dimensional
problems using the SVD algorithm; and v) it is possible to speed up the method.

However, the algorithm also presents some important drawbacks: i) it is very
sensitive to outliers presence; ii) the initial states for global matching play a basic
role for the success of the method when dealing with important deformations
between model and scene points; iii) the estimation of the initial states mentioned
above is not a trivial task, and iv) the cost of a local adjustment can be important
if a low percentage of oclussion is present.

In view of the later, the algorithm performs bad when dealing with important
transformations. As Zhang stated in [16]: \we assume the motion between the
two frames is small or approximately known", hence this is a precondition of
the algorithm to get reasonable results. Figure 2 shows several examples of that
with one of the shapes considered in our experimental study.

Fig. 2. ICP performance di�ers when dealing with small or big transforms. On the

left: in blue, original shape; in green, original shape with a 20 rotation; in red, ICP

estimation applied to the original object. On the right: same distribution of colours for

a 90 rotation.

Robust point matching: Rangarajan et al. ( [14]) present the RPM method
based on �nding the registration transform and the one-to-one correspondences
between point features extracted from the images and rejecting non-homologies
as outliers. The RPM algorithm minimizes the following objective function:

min
M;�;t;s

E(M; �; t; s) =

N1X

i=1

N2X

j=1

MijkXi� t� sR(�)Yjk
2+



2
(log s)2��

N1X

i=1

N2X

j=1

Mij

(2)
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subject to

N1+1X

i=1

Mij = 1;8j 2 f1; :::; N2g;

N2+1X

j=1

Mij = 1;8i 2 f1; :::; N1g and Mij 2 f0; 1g

Equation ( 2) describes an optimization problem from which the transforma-
tion parameters can be obtained by minimization. This problem contains two
related optimization ones: the matching between the points of the two images
and the registration transform estimation. The result is a two-stage algorithm
which alternates between solving for the registration and the matching.

4 Iterated local search for the 2D registration problem

Instead of following previous approaches ( [1]) based on searching for a good
matching and then solving for the registration transform, in our work, we use the
ILS metaheuristic for jointly solving our two-fold registration problem �nding
a good matching between both image points and getting the best isometric
registration transform we supposed it has been applied. To do so, the basics of
ILS are �rst described, and the local search (LS) algorithm considered and the
di�erent ILS components are later analyzed.

4.1 The iterated local search metaheuristic

ILS [13] belongs to the group of metaheuristics that extend classical LS methods
by adding diversi�cation capabilities to them. This way, ILS is based on wrapping
a speci�c LS algorithm by generating multiple initial solutions to it as follows:

procedure Iterated Local Search

s0 = GenerateInitialSolution
s� = LocalSearch(s0)
repeat

s0 = Perturbation (s�; history)

s�
0

= LocalSearch(s0)

s� = AcceptanceCriterion(s�; s�
0

; history)
until termination condition met

end

Hence, the algorithm starts by applying LS on an initial solution and iterates
a procedure where a strong perturbation is applied on the current solution s�

(in order to move it away from its local neighborhood), and the solution so
obtained is then considered as initial starting point for a new LS, from which
another locally optimal solution s�

0

is obtained. Then, a decision is made between
s� and s�

0

to get the new current solution for the next iteration.
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4.2 The local search algorithm considered

As said, this LS procedure allows us to obtain a complete solution to the 2D
registration problem: a point matching between the data and the model shapes,
and a registration transform to move the former into the latter. To do so, we
only search in the matching space (only the point matching is encoded in the
LS solution) and derive the registration by a least squares estimation as done in
the ICP and RCP methods (see section 3.2).

The point matching between both images is represented as a permutation �

of size N = max(N1; N2), with N1 and N2 being the number of points in the
data and model shapes, respectively. If N1 � N2, then �(i) represents the model
point associated to the data point i and viceversa. Notice that this representation
has two main pros: i) it is based on a permutation, a very common structure
in the �eld (used for example to solve the traveling salesman and the quadratic
assignment problems), and ii) it allows us to deal with the case when both images
have a di�erent number of points, thus automatically discarding the outliers.

Moreover, the other novelty of our method is that the features of the shape
are used to guide both the matching and the registration. This way, the objective
function will include information regarding them both as follows:

min
M;�;t;s

E(M; �; t; s) = w1 �

N1X

i=1

N2X

j=1

MijkXi � t� sR(�)Yjk
2 + w2 � f(M) (3)

where the �rst term stands for the registration error (M is the binary matrix
storing the matching encoded in � and �; t; s are the isometric transform param-
eters to be estimated (see expression 2)), the second one for the matching error,
and w1; w2 are weighting coeÆcients de�ning the relative importance of each.

As regards the second term, there are di�erent ways to de�ne the f function
evaluating the goodness of the matching stored in M as a big amount of infor-
mation can be obtained from the medial axis ( [9]). In this contribution, we have
chosen the following:

f(M) = 0:75 � pointtype + 0:25 � (medaxis+ length+ izs)

where pointtype measures the error associated to the assignment of points of
di�erent types and the remaining three criteria refer to the variation of the
distance map along di�erent branches (see section 2.2).

Finally, the neighborhood operator is the usual 2-opt exchange, based on
selecting two positions in � and exchanging their values. The LS considered
is the �rst improvement variant, where the whole neighboorhod is generated
to obtain the best neighbor and the algorithm iterates till the latter does not
outperform the current solution.

4.3 The iterated local search components

GenerateInitialSolution: A random permutation is computed.
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Perturbation: As a stronger change than the one performed by the 2-opt LS
neighborhood operator is needed, we deal with the random exchange of the
positions of the values included within a randomly selected sublist of size N

a
,

with a 2 f2; 3; 4; 5; 6g (of course, the lesser the value of a, the stronger the
perturbation applied).

AcceptanceCriterion: We directly select the best of s� and s�
0

as current solution,
as usually done.

Termination condition: The algorithm stops when a �xed number of iterations
is reached.

5 Experiments and analysis of results

We have applied the algorithm to two di�erent shapes, over which di�erent
rotations, translations and scales have been developed to test the behavior of
the technique. In the �rst row of �gure 3 we show the original shapes and the

corresponding partitions induced by medial axis transform, the information that
will be used during the registration transform computation to guide the matching
among points.

The ILS algorithm has been run during 50 iterations considering a = 2 for
the perturbation operator. The weights in the objective functions have been

de�ned as w1 = 1 and w2 = 2 � mse(Rinitial)

f(M(�initial))
, with Rinitial and f(M(�initial))

being respectively the registration and matching errors of the initial solution.

The results obtained are showed in rows 2 to 6 of �gure 3. Second row cor-
responds to a simple 60o rotation of the �rst original object; next column shows
its partition; in the third column we store the representation of the mapping
among di�erent points of the di�erent object (we have used several colours to
distinguish the mappings of each kind of point). It is important to see in this
column the way in which only points of same type match each other, even in
the presence of noise in part of the object (third and fourth row) and di�er-
ent projection and junction points di�er from the original and the transform
shape. Last column reects the e�ect of applying the estimated transform to the
original shape and doing a superposition on the transformed object. Third row
corresponds to a 180o rotation with the presence of noise in part of the object.
Next row adds a scale transform of 0.5 to the original object. In �fth and sixth
rows, 30 and 90 with a 0.5 scale value transforms have been respectively applied
to the top right shape.

6 Concluding remarks

In this contribution, we have formulated the image registration problem as a
two fold one in order to jointly solve for the matching and the search for the
isometric parameters of the registration transform. To do so, we take advantage
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Fig. 3. First row: two original shapes and partition induced by the medial axis. Next

rows (from left to right): isometric transform applied to the original shape, object par-

tition, matching results: di�erent point types with di�erent colours (yellow!frontiers,

blue!junctions, cyan!projections).Finally the superposition of the transformed image

and the result of applying the estimated transform to the original shape.
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of the information infered from the medial axis of the object and we use the
ILS metaheuristic to face such a complex optimization task. We have presented
results with important transformations applied to di�erent model shapes.

References

1. E. Bardinet, S. Fern�andez-Vidal, S. Damas Arroyo, G. Malandain, and N. P�erez

de la Blanca Capilla. Structural object matching. In 2nd International Sympo-

sium on Advanced Concepts for Intelligent Vision Systems (ACIVS 2000), page

To appear, Baden-Baden, Germany, August 27-30 2000.

2. P.J. Besl and N.D. McKay. A method for registration of 3-D shapes. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 14:239{256, February 1992.

3. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: overview and

conceptual comparison. Technical Report 2001-13, IRIDIA, Univerist�e Libre de

Bruxelles, 2001.

4. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-

Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362{380.

M.I.T. Press, Cambridge, MA, 1967.

5. L.G. Brown. A survey of image registration techniques. ACM Computing Surveys,

24(4):325{376, December 1992.

6. L. Calabi. A Study of the Skeleton of Plane Figures. Technical Report 60429,sr-2,

Parke Mathematical Laboratories, December 1965.

7. P.E. Danielsson. Euclidean distance mapping. Computer Graphics and Image

Processing, 14:227{248, 1980.

8. J. Feldmar and N. Ayache. Locally aÆne registration of free-form surfaces. In

Computer Vision and Pattern Recognition (CVPR'94), pages 496{501, Seattle,

USA, June 1994. IEEE.

9. S. Fern�andez-Vidal, E. Bardinet, S. Damas Arroyo, G. Malandain, and N. P�erez

de la Blanca Capilla. Object representation and comparison inferred from its

medial axis. In 15th International Conference on Pattern Recognition, page To

appear, Barcelona, Spain, September 3-8 2000.

10. K.P. Han, K.W. Song, E.Y. Chung, S.J. Cho, and Ha Y.H. Stereo matching using

genetic algorithm with adaptive chromosomes. Pattern Recognition, 34:1729{1740,

2001.

11. S. Loncaric. A survey of shape analysis techniques. Pattern Recognition, 31(8):983{

1001, 1998.

12. G. Malandain and Fern�andez-Vidal S. Euclidean Skeletons. Image and Vision

Computing, 16(5):317{327, April 1998.

13. H. Ramalhinho, O. Martin, and T. St�utzle. Handbook of Metaheuristics, chapter

Iterated Local Search. F. Glover and G. Kochenberger (Eds.), 2002. To appear.

14. A. Rangarajan, H. Chui, E. Mjolsness, S. Pappu, L. Davachi, P. Goldman-Rakic,

and J. Duncan. A robust point-matching algorithm for autoradiograph alignment.

Medical Image Analysis, 1(4):379{398, 1997.

15. S.M. Yamany, M.N. Ahmed, and A.A. Farag. A new genetic-based technique for

matching 3-d curves and surfaces. Pattern Recognition, 32:1817{1820, 1999.

16. Z. Zhang. Iterative point matching for registration of free-form curves and surfaces.

International Journal of Computer Vision, 13(2):119{152, 1994.


