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Abstract. The attribute selection techniques for supervised learning, used in the
preprocessing phase to emphasize the most relevant attributes, allow making
models of classification simpler and easy to understand. Depending on the
method to apply: starting point, search organization, evaluation strategy, and
the stopping criterion, there will exist a cost added to the classification
algorithm that we are going to use, that normally it will be compensated, in
greater or smaller extent, by the attribute reduction in the classification model.
The algorithm (SOAP: Selection of Attributes by Projection) has lower
computational cost (O(mn log n) m attributes and n examples in the data set)
with respect to other typical algorithms due to the absence of distance and
statistical calculations. It is applied to labelled data set with no need of
transformation. The performance of SOAP is analysed in two ways: percentage
of reduction and classification. SOAP has been compared to CFS and ReliefF.
The results are generated by 1NN and C4.5 before and after the application of
the algorithms.

1. INTRODUCTION.

The data mining researchers, especially those dedicated to the study of algorithms that
produce knowledge in same of the usual representations (decision lists, decision trees,
association rules, etc.), usually make their tests on standard and accessible databases
(most of them of small size). The purpose is to verify and validate independently the
results of their algorithms. Nevertheless, these algorithms are modified to solve
specific problems, for example real databases that contain much more information
(number of examples) than standard databases used in training. To accomplish the
final tests on these real databases with tens of attributes and thousands of examples is
a task that takes a lot of time and memory size.

It is advisable to apply to the databases preprocessing techniques to reduce the
number of attributes or the number of examples in such a way as to decrease the
computational cost. These preprocessing techniques are fundamentally oriented to one
of the next goals: feature selection (eliminating non-relevant attributes) and editing
(reduction of the number of examples by eliminating some of them or calculating
prototypes [1]). Our algorithm belongs to the first group.

In this paper we present a new method of attribute selection, call SOAP (Selection
of Attributes by Projection), which has same important characteristics:



* Considerable reduction of the number of attributes.

¢ Lower computational cost O(mn log n) than other algorithms.

¢ Absence of distance and statistical calculations: correlation, information gain, etc.
* Conservation of the error rates of the classification systems.

The hypothesis on which the heuristic is based is: "better those attributes with
smaller number of label changes". The next section discusses related work. Section 3
describes the SOAP algorithm. Section 4 presents the results. We have dealt with
several databases from the UCI repository [4]. To show the performance of our
method we have used 1NN and C4.5 before and after applying SOAP. Among the
most known feature selection methods we have chosen CFS [6] and ReliefF [11]. The
last section summarises the findings.

2. RELATED WORK.

Feature selection is defined by many authors by looking at it various angles
depending on the characteristic that we want to accentuate. In general, attribute
selection algorithms perform a search through the space of feature subsets, and must
address four basic issues affecting the nature of the search: 1) Starting point: forward
and backward, according to begin with no feautures or with all features. 2) Search
organization: exhaustive or heuristic search. 3) Evaluation strategy: wrapper or filter.
4) Stopping criterion: a feature selector must decide when to stop searching through
the space of feature subsets: a predefined number of features are selected, a
predefined number of iterations reached, whether addition (or deletion) of any feature
does not produce a better subset, or an optimal subset according to some evaluation
function is obtained.

Algorithms that perform feature selection as a preprocessing step prior to learning
can generally be placed into one of two broad categories: wrappers, Kohavi [9],
employs a statistical re-sampling technique (such as cross validation) using the actual
target learning algorithm to estimate the accuracy of feature subsets. This approach
has proved useful but is very slow to execute because the learning algorithm is called
repeatedly. Another approach, called filter, operates independently of any learning
algorithm, undesirable features are filtered out of the data before induction begins.
Filters use heuristics based on general characteristics of the data to evaluate the merit
of feature subsets. As a consequence, filter methods are generally much faster than
wrapper methods, and, as such, are more practical for use on data of high
dimensionality. FOCUS [3], LVF [18] use class consistency as an evaluation metric.
A method for discretization called Chi2 [17]. Relief [8] works by randomly sampling
an instance from the data and then locating its nearest neighbour from the same and
opposite class. Relief was originally defined for two-class problems and was later
extended (ReliefF [11]) to handle noise and multi-class data sets, and RReliefF [16]
handle regression problems. Other authors suggest neuronal networks like attribute
selector [19]. In addition, learning procedures can be used to select attributes, like ID3
[14], FRINGE [13] and C4.5 [15]. Methods based on the correlation like CFS [6], etc.



3. SOAP: Selection of Attributes by Projection.

3.1. Description.

To describe the algorithm we will use the well-known data set IRIS, because of the
easy interpretation of their two-dimensional projections.

Three projections of IRIS have been made in two-dimensional graphs. In figure 1 it
is possible to be observed that if a projection of the examples is made on the abscissas
or ordinate axis we can not obtain intervals where a class is majority. Only the
interval [4.3,4.8] of Sepallength for the Setosa class or [7.1,8.0] for Virginica. In
figure 2 it can be seen as for the Sepalwidth parameter (in the ordinate axis) clear
intervals are not appraised either and nevertheless, for the Petalwidth attribute is
possible to be appreciated some intervals where the class is unique: [0,0.6] for Setosa,
[1.0,1.3] for Versicolor and [1.8,2.5] for Virginica. Finally in figure 3, it is possible to
be appreciated that the classes division is almost clear in both attributes. This is
because when projecting the examples on each attribute the number of label changes
is minimum. For example, it is possible to be verified that for Petallength the first
change of label takes place for value 3 (setosa to Versicolor), the second in 4.5
(Versicolor to Virginica), these are other changes later in 4.8, 4,9, 5,0 and the last one
isin5.1.

SOAP is based on this principle: to count the label changes of the examples,
produced when crossing the projections of each one of them in each dimension. If the
attributes are in increasing order according to the number of label changes, we will
have an ordered list that defines the order of selection, greater to smaller importance.
SOAP supposes to eliminate the basic redundancy between attributes, that is to say,
the attributes with interdependence have been eliminated. Finally, to choose the more
advisable number of features, we define a reduction factor RF in order to take the
subset from attributes formed by the first of the aforementioned list.

Before formally exposing the algorithm, we will explain with more details the
main idea. We considered the situation depicted in figure 2: the projection of the
examples on the abscissas axis produces a ordered sequence of intervals (some of then
can be a single point) which have assigned a single label or a set of them: {[0,0.6] Se,
[1.0,1.3] Ve, [1.4,1.4] Ve-Vi, [1.5,1.5] Ve-Vi, [1.6,1.6] Ve-Vi, [1.7,1.7] Ve-Vi,
[1.8,1.8] Ve-Vi, [1.9,2.5] Vi}. If we apply the same idea with the projection on the
ordinate axis, we calculate the partitions of the ordered sequences: {Ve, R, R, Ve, R,
R,R, R, R, R, R, R, R, R, Se, R, Se, R, Se}, where R is a combination of two or three
labels. We can observed that we obtain almost one subsequence of the same value
with different classes by each value from the ordered projection, that is to say, on the
ordinate axis provides much less information that on the abscissas axis.

In the intervals with multiple labels we will consider the worst case, that is to say,
the maximum number of label changes possible for a same value.

The number of label changes obtained by the algorithm in the projection of each
dimension is: Petalwidth 16, Petallength 19, Sepallenth 87 and Sepalwidth 120. This
way we would achieve a ranking with the best attributes from the point of view of
classification. This result agrees with the known in the literature which states that the
width and length of petals are more important than those related to sepals.
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3.2. Definitions.

Definition 1: Let the attribute A; be a continuous or discrete variable that takes
values in [;=[min;,max;]. Then, A is the attributes space defined as A=I,XI,xIKI],,
where m is the number of attributes.

Definition 2: An example elE is a tuple formed by the Cartesian product of the
value sets of each attribute and the set C of labels. We defines the operations att and
lab to access the attributes and its label (or class): att: E x N - A and lab: E - C,
where N is the set of natural numbers.

Definition 3: Let the universe U be a sequence of example from E. We will say
that a database with n examples, each of them with m attributes and a class, forms a
particular universe. Then U=<u[l],...,u[n]> and as the database is a séquense, the
access to an example is achieved by means of its position. Likewise, the access to j-th
attribute of the i-th example is made by att(u[i],j), and for knowing its label lab(u[i]).

Definition 4: An ordered projected sequence is a sequence formed by the
projection of the universe onto the i-th attribute. This sequence is sorted out in
increasing order.

Definition 5: A partition in subsequences is the set of subsequences formed from
the ordered projected sequence of an attribute in such a way as to maintain the
projection order. All the examples belonging to a subsequence have the same class
and every two consecutive subsequences are disjointed with respect to the class.
Henceforth, a subsequence will be called a partition.

Definition 6: A subsequence of the same value is the sequence composed by the
examples with identical value of the i-th attribute within the ordered projected
sequence.

3.3. Algorithm.

The algorithm is very simple and fast, figure 4. It has the capacity to operate with
continuous variables, as well as, with databases with two classes or multiclass. For the
ascending ordering task by each attribute the QuickSort algorithm is used [7]. This
algorithm is O(n log n), on average. Once ordered by an attribute, we would count the
label changes throughout ordered projected sequence. NumberChanges, figure 6, will
consider if we treat with different values from an attribute, or with a subsequence of
the same value. In the first case, it will compare the present label with the one of the
following value. Whereas in the second case, subsequence of the same value, we
would count so many label changes as are possible (function ChangesSameValue).

The k first attribute which NCE (number of label changes) under NCEy;,, will be
selected. NCEy, is calculated applying the follow equation:

NCElim:NCEmin+(NCEmax'NCEmin) *RF (1)

RF: reduction factor.



Input: E training (n exanples, mattributes)
Qutput: E reduced (n exanples, k attributes (k<=n))
For each attribute a, with i in {1..n}

E ~ QuickSort(E, a,)

NCE ~ Number Changes(E, a,)
NCE Attribute Ranking
Sel ect the k first

Fig. 4. SOAP algorithm

Input: E training (n exanples, mattributes)
Qut put: nunber of |abel changes

For each exanple e, O Ewith j in {1..n}

If att(u[j],i) O Subsequence sane val ue
| abel Changes += ChangesSaneVal ue()
El se
If lab(u[j]) <> lab(u[j+1])
| abel Changes++

Fig. 5. NumberChanges algorithm

4. EXPERIMENTS.

In order to compare the effectiveness of SOAP as a feature selector for common
machine learning algorithms, experiments were performed using twelve standard
numeric data sets form the UCI collection [4]. The data sets and their characteristics
are summarized en Table 3. Two machine learning algorithms representing two
diverse approaches to learning were used in the experiments, a decision tree learner
(C4.5) and an instance-based learner (INN). The percentage of correct classification,
averaged over ten ten-fold cross-validation runs, were calculated for each algorithm-
data set combination before and after feature selection by SOAP (RF 0.35 and 0.25),
CFS and ReliefF (threshold 0.05). For each train-test split, the dimensionality was
reduced by each feature selector before being passed to the learning algorithms. The
same fold were used for each feature selector-learning scheme combination.

To perform the experiment with CFS and ReliefF we used Weka' (Waikato
Environment for Knowledge Analysis) implementation.

Table 1 shows the results for attribute selection with C4.5 and compares the size
(number of nodes) of the trees produced by each attribute selection scheme against the
size of the trees produced by C4.5 with no attribute selection. Smaller trees are
preferred as they are easier to interpret, but accuracy is generally degraded. The table
shows haw often each method performs significantly better (denoted by a ©) or worse
(denoted by a @) than performing no feature selection (column 2). Throughout we

! http://www.cs.waikato.ac.nz/~ml



speak of results being significantly different if the difference is statistically at the 5%
level according to a paired two-sided t test, each pair of points consisting of the
estimates obtained in one ten-fold cross-validation run for before and after feature
selection. From this table it can be seen that SOAP produces the smallest trees, it
improves C4.5s performances on nine data sets and degrades it on one.

From Tables 1 and 2 it can be seen (by looking at the last two row) the average for
two execution of SOAP (RF 0.35 and 0.25, equation 1)

Table 2 shows the average number of features selected, the percentage of the
original features retained and the accuracy of 1NN. It can be seen (by looking at the
fifth column) that SOAP retained 43% (35%) of the attributes on average. Figure 6
shows the average number of feature selected by SOAP, CFS and ReliefF as well as
the number present in the full data set.

It is interesting to compare the speed of the attribute selection techniques. We
measured the time taken in milliseconds? to select the final subset of attributes. SOAP
is much faster than the other schemes, Table 3.

Table 1. Result of attribute selection with C4.5. Accuracy and size of trees. o,® Statistically
significant improvement or degradation (p=0.05).

Original SOAP CFS RLF

Data Set Ac. Size Ac. Size Ac. Size Ac. Size
balance-scale 78,18 81,08 57,94 e 6,28 o 78,18 81,08 78,29 81,54
breast-w 95,01 24,96 94,84 21,62 o 95,02 24,68 95,02 24,68
diabetes 74,64 42,06 74,34 8,56 o 74,36 1468 o 65,10 e 1,00 o
glass 68,18 46,34 66,78 46,10 69,35 40,90 o 68,97 30,32 o
glass2 78,71 24,00 78,90 16,32 0o 79,82 14,06 o 53,50 @ 1,70 o
heart-stat 78,11 34,58 79,56 2820 0 80,630 23840 82330 14,780
ionosphere 89,83 26,36 90,06 22,52 o 90,26 23,38 0 89,91 22,72 o
iris 94,27 8,18 94,40 8,12 94,13 7,98 94,40 8,16
segment 96,94 80,98 90,94 e 110,68 e 9635e 73920 96,93 80,66
sonar 74,28 27,98 70,72 e 13,18 o 74,38 28,18 70,19 o 9,74 o
vehicle 71,83 139,34 5284 e 22260 66,42e 106,600 6622 e 137,42
waveform 75,36 59292 77,47 o 485,26 o 77,18 0 513,78 o 75,51 217,72 o
Average (35) 81 94 77 66 81 79 78 53
Average (25) 7 59

2 This is a rough measure. Obtaining true cpu time from within a Java program is quite difficult.



Table 2. Result of attribute selection with INN. Average number of features selected, the
percentage of the original features retained and the accuracy. o,e Statistically significant
improvement or degradation (p=0.05).

Original SOAP CFS RLF
Data Set Atts Ac. Atts % Ac. Atts % Ac. Atts % Ac.
balance-scale 86,56 1,39 35 57,98 e 4,00 100 86,56 4,00 100 86,56

4
breast-w 9 9525 6,00 67 94,16 e 897 100 9524 805 89 9535
diabetes 8 70,35 299 37 70,16 3,11 39 70,07 000 O 3490 e
glass 9 70,28 394 44 73040 630 70 74250 3,39 38 63,836
glass2 9 77,79 472 52 80,37 395 44 83,070 032 4 5429 e
heart-stat 13 7559 7,11 55 77,74 6,26 48 78370 6,27 48 78,89 o
ionosphere 34 86,78 31,55 93 87,07 12,30 36 89,72 o 30,88 91 87,49
iris 4 9527 200 50 96,33 1,93 48 9560 4,00 100 95,27
segment 19 97,13 7,00 37 9129e 566 30 97,00 1504 79 97,19
sonar 60 84,47 542 9 7063 e 17,84 30 8356 389 6 68,61 e
vehicle 18 69,48 1,09 6 4650e 7,45 41 6286 e 581 32 61,28 e
waveform 40 7359 12,99 32 79,330 1485 37 79130 577 14 73,09
Average (35) 19 82 7 43 77 8 52 83 7 50 75
Average (25) 6 35 75
Table 3. Discrete class data sets with numeric attributes. Time in milliseconds.
Original SOAP CFS RLF
Data Set Instances  Atts Clases t-ms t-ms t-ms
1 balance-scale 625 4 3 10 17455 561
2 breast-cancer 699 9 2 10 40 1322
3 diabetes 768 8 2 10 30 1422
4 Glass 214 9 7 0 20 160
5 glass2 163 9 2 0 10 80
6 heart-statlog 270 13 2 10 10 281
7 ionosphere 351 34 2 10 120 1202
8 iris 150 4 3 0 10 40
9 segment 2310 19 7 40 521 29362
10 sonar 208 60 2 10 100 771
11 vehicle 846 18 4 10 70 3956
12 waveform 5000 40 3 210 2434 282366
Average 26,67 1735,00 26793,58

S. CONCLUSIONS.

In this paper a deterministic attribute selection algorithm is presented. It is a very
efficient and simple method used in the preprocessing phase A considerable reduction
of the number of attributes is produced in comparison to other techniques. It does no



need distance and statistical calculations which could be very expensive in time
(correlation, gain of information, etc.). The computational cost is lower than other
methods O(mMIbg n).

In later works, we will focused our research on the selection of the subset of

attributes once they have been obtained. Finally we will try to adapt SOAP to
databases with discrete attributes where redundant features have not been eliminated.

O Data
O CFS
ORLF
H m SOAP

0 - i | |
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 6. Average number of feature selected.
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