Neural-Networks-Based Edges Selector for
Boundary Extraction Problems

Horacio M. Gonzalez-Velasco, Carlos J. Garcia-Orellana, Miguel
Macias-Macias, F. Javier Lépez-Aligué, and M. Isabel Acevedo-Sotoca

Departamento de Electrénica e Ingenieria Electromecéanica
Universidad de Extremadura
Av. de Elvas, s/n. 06071 Badajoz - SPAIN
horacio@nernet.unex.es

Abstract In the present work, a neural-networks-based system is pre-
sented that makes it possible to reduce, when generating edge maps to be
used in an object boundary detection problem, the number of edges that
are not due to the object itself, but to the background. Starting from
a conventional edge detection, the selection is carried out by a neural-
networks-based classifier, which is trained using examples. As a test for
the system, the application to bovine livestock images is presented, from
which we want to extract the boundary of the animal.

1 Introduction

Edge detection is one of the fundamental operations in digital image analysis.
This stems from the fact that edges characterize the boundaries of the image
objects, and are therefore the base for subsequent segmentation systems. From
the different boundary extraction techniques, those based on deformable models
[1,2] and genetic algorithms search [3] stand out because of their success. In these
methods, a parametric contour of the searched object is placed by optimizing a
certain energy function, which is based on an edge map of the image [2,4,5].

There are three fundamental properties that a good edge detector must pre-
sent [6]: to detect all the edges present in the image (absence of false positives),
not to detect any edge that is not in the image (absence of false negatives) and,
finally, that the position of the detected edge pixels is the correct one. Nevert-
heless, it is important, for the good operation of the above-mentioned boundary
extractors, that the edge maps does not contain many more edges than those
corresponding to the searched object. But this is not always possible, mainly
in those images where backgrounds can not be controlled. Thus, in those ca-
ses it would be useful to have a system to classify the edges detected in the
image, retaining only those which more likely correspond to the object itself,
and discarding those corresponding to objects in the background.

In this work, a system for the edges selection, based on a multilayer percep-
tron neural network, is presented. This network is trained using a set of images
for which the edges of the searched object are known. The selection system will

act over a previously obtained edge map, recognizing those edges that have their
origin in the object we are looking for, according to the learned criterion. Alt-
hough there exist many previous papers where NN techniques are applied to the
problem of edge detection [7,8,9], they are in general focused on the enhance-
ment step, trying to obtain a good detector in the previously mentioned sense.
However, in this work it is not our interest to detect edges by means of the neural
network, but to select those that serve for the subsequent processing step, once
detected.

In the two following sections the proposed selection system is described, along
with its integration within the global detector. After that, in section 4, results
from a concrete application of the method are presented, while in section 5 there
is a brief discussion about the method and its possible improvements.

2 System overview

In general, the selector proposed can be integrated in any kind of conventio-
nal edge detector, between enhancement and thresholding stages (see figure 1).
However, since the direction of the line orthogonal to the edge is needed by
the selector, the use of edge detectors based on the first derivative (gradient)
is convenient. It must be followed by a nonmaximum suppressor, with which
best-located one-pixel-width edges are obtained.

() (8) N(m,n) EDGES
Image >
SELECTOR

r _________________________________ A
I(m,n) I | N
| m,n
v Ism.n) | |G(m,n)| I N(m,n) v (mn)
i |
SMOOTHING | GRADIENT p| Nonmaximum THRESHOLDING
: detector suppressor : (A)
|
i o [G(m,n)] ! M(m,n)
__________________________________ ! +

ENHANCEMENT ()
Edge map

Figure 1. Block diagram representing the type of edge detector where the proposed
selection system is integrated (path B in the figure)

If the edges selector is not used (path A in figure 1), the more strongly detec-
ted edges are obtained. However, in many applications this is not our interest,
as in that described in section 4. When we use path B, high values are obtained,
at the output of the selector, for the edges which are similar to those learned
from the examples, whichever its strength. So, the edge map produced through
the thresholding process will contain the edges which more likely correspond to
the learned ones.

To make the training of the selector, K images I;,(m,n) with k € {1,---, K}
(where Ix(m,n) € [0,1]) are used, for which their corresponding reference edge

maps Ri(m,n) are available. In those maps only the edges corresponding to the
object can be found (Rg(m,n) = 1 for edge pixels, and 0 otherwise). Examples
of these images are presented in figures 4 and 5.

3 Neural-networks-based selector

By means of the proposed selection system (followed by thresholding) we intend
to classify edge pixels, previously detected in the enhancement step, into two
classes: correct edges (i.e. corresponding to the searched object) and erroneous
edges (which do not correspond to it). Thus, among the edges detected in the
image, the system will select only those pixels classified as correct edges, rejecting
those considered as incorrect.

EDGES SELECTOR
y- i
N(m,n ! P E(m,n) |
[Image)] Suppressor (m.n) Ly Maximum Edge 1
i output ! Map Extractor !
| I T |
i | h 4 \ !
1 |
|| Directions | @ [G(m.n) | PARAMETERS ,| NN-based | |
I Ll
map : calculation SELECTOR :
| I
I(m,n)

THRESHOLDING

Edge map

Figure 2. Diagram describing the selector system proposed, where, along with the
nonmaximum suppressor output, the image itself and the directions of the gradient are
represented as inputs, because they are needed to calculate parameters.

The classification process needs to be made through the following three steps,
graphically represented in figure 2:

1. Extraction of a maximum edge map: In the first place, we have to
determine what pixels have to be classified, for which the edge detection
made in the previous stage is used. Since there could be, a priori, weak and
strong edges in the contour we wish to extract, we are interested in classifying
all those pixels that are detected as edge, whatever their strength. Thus, the
pixels to be classified will be determined by thresholding the nonmaximum
suppressor output image N (m,n), using for the threshold a low value. This
is called maximum edge map E(m,n).

In our application, we used a threshold low enough to permit at least 95% of
the pixels of N(m,n) without zero value to be considered as edges, rejecting

the 5 % of weaker detected ones, which likely correspond to noise introduced
in the image capture process. In figures 4 and 5, examples of maximum edge
maps (along with their corresponding original images) are presented. It must
be mentioned that using the nonmaximum suppressor produces one-pixel-
width edges, which reduces the number of pixels to be processed.

2. NN processing: Once the edge pixels to be classified are determined, a set

of P parameters (see section 3.1) is calculated for each one, related to its
position and the gray profile around it in the original image. Those parame-
ters are used as inputs for a multilayer perceptron, with one hidden layer
and two neurons at the output, which give us the membership to each class:
ye(m,n) for correct edges and y.(m,n) for erroneous ones.
The grey-level image N’(m,n) has then a value proportional to y.(m,n) —
ye(m,n) for those pixels detected as edges, and 0 for the rest. Therefore,
pixels with larger values correspond with correct edges, and vice versa, so
by the thresholding process, the “more correct” edges will be obtained.

3. Final thresholding: This stage, placed outside the selector (see figures 1
and 2), is responsible for pointing out as edges those pixels of N'(m,n) with
larger intensity (correct edges). In this process it is very important the value
of the threshold used, because it determines the number of edge pixels in the
final image. So, a value such that the number of edge pixels in M (m,n) is
similar to the average number of edges in the reference images Ri(m,n) is
proposed.

Regarding the process described above, two aspects require further explana-
tion: parameters used as input to the neural network and the training process.

3.1 Input parameters for the NN

If an object has, more or less, a uniform color (and, therefore, a gray-level), a
good method to identify which their edges are consists of analyzing the gray-
level profile in their orthogonal direction. For that reason, we propose to use, as
inputs to the neural network, certain statistical parameters calculated over two
rectangular windows in the direction orthogonal to the edge, located on each
side of it, as shown in the examples of figure 3. Particularly, in the application
of section 4, the mean and the variance of gray levels have been used. With the
mean we have an idea of the gray values at each side of the pixel, while the
variance will indicate the uniformity of the grey levels in the windows.

Furthermore, in those applications where the object of interest has a well-
defined shape and a position that varies within certain limits, it is advantageous
to use also as parameters the position of the pixel and the direction orthogonal
to the edge, since finding edges of the object around certain positions and with
a concrete direction should be expected. This is the case of the example in
section 4.

(b)

Figure 3. In this figure, examples of edge pixels (white) and the windows of 10 x 5
size in the direction orthogonal to the edge (black) are presented.

3.2 Training

In order to train the network we need prototypes for each of the two proposed
clases. Considering that the set we are classifying is formed by those pixels
detected as edges, the prototypes extraction process for each training image will
consist of three steps:

— First, for the image I (m,n) a maximum edge map Fj(m,n) is obtained,
using the method described above.
— Later, the set Pc j is defined as

PC,k: = {(mcanc) | Ek(mcanc) = Rk(mmnc) = 1} (1)

so it contains the k-th image pixels detected as edges that belong to the
considered object (prototypes for the class of correct edges). The set

Pry = {(mi,n;) | Ex(mi,n;) = 1y Rg(my,ng) =0} (2)

is also defined, which contains the pixels detected as edges that do not belong
to the object (prototypes for the class of erroneous edges).

— Finally, for each pixel of both sets, the parameters are calculated, to be used
in the training of the network.

Once obtained the prototypes, the whole set is split into three subsets (at
the level of images, to obtain a better generalization): training, validation and
test, and the process starts training one perceptron with very few neurons in
the hidden layer. The training is carried out using the training subset and the
RPROP algorithm described in [10], and stops when the number of misclassifica-
tions obtained over the validation set goes through a minimum. Later, we repeat
this process by increasing the network size and we choose the new configuration
as optimal if the number of misclassifications over the validation set is lower
than the previous one.

4 Experiments and results

The previously described technique was applied to the generation of edge maps
for bovine livestock images (figure 4, first image), with the final aim of finding
the boundary of the animal through a genetic search, using the method described
in [11]. To this end we had 45 images for which their corresponding references
were generated. In the first place, the training process and its results will be
described, and later the results obtained when applying the edge detector to the
set of test images, with and without selector, are presented.

4.1 Training

As stated before, the 45 images were divided into three subsets: 27 were used for
training, 9 for validation and 9 for test. From all the generated prototypes, the
training of the network was carried out using 60.000 from the training subset
and 20.000 from the validation and tests subsets, uniformly distributed between
classes. Using this sets, networks were trained with a number of neurons in the
hidden layer between 20 and 55, obtaining the best results with 46 neurons. For
this configuration, 89.5%, 87.5% and 88.1% success rate for correct edges were
obtained, and also 87.0%, 85.3% and 85.1% for erroneous edges, considering the
training, validation and test sets, respectively.

4.2 Edge detection

After training, the edge detector was applied, with and without selector, to the 9
images of the test subset. To determine the effectiveness of both configurations
quantitatively, a figure of merit was proposed, based on the one defined by
Pratt [6] for conventional edge detectors. That figure of merit considers the three
aspects that a good edge detector must observe, cited in section 1. However we
used Ry (m,n) images as references, which do not contain all the edges of the
image, but only those corresponding to the searched object. Thus, concepts of
false positive and false negative are modified: now a detected edge which do not
correspond to the object is a false positive (though the edge exists in the image)
and a non-detected edge of the object (which generally exists) is a false negative.
Therefore, this figure of merit has a large value when many edges are detected
from the boundary of the object and few from the rest of the image, resulting 1
for the reference.

The results obtained for test images are shown in table 1. It can be seen
that the obtained value for the system with selector is significantly larger in all
cases, which indicates a great improvement with regard to the system without
selector. In figures 4 and 5, two examples are presented, where the outputs of
the detector for both cases, along with the original image, are shown. As can be
seen, while in the results without selector many edges are observed due to the
objects in the background, they disappear almost completely when the selector
is applied, obtaining then a more suitable edge map for the genetic search.

Reference Ri7

Maximum edge map Ei7

[T e
P (‘77 ‘v« L 7 ‘.) -E, (. -
g e
‘U«» ’/ \j\;\: .:.
. st
Jh R

Result without selector Result with selector

Figure 4. In this figure, an example of the images used and generated by the selector
system are shown, along with the final results, with and without selector. Apart from
the first one, the images has been inverted to improve presentation (contours must be
white and background black).

Reference Rog

Result without selector Result with selector

Figure 5. Another example of the images used and generated by the selector system is
presented, along with the final results, with and without selector. Apart from the first
one, the images has been inverted to improve presentation (contours must be white
and background black).

Table 1. Results for the edge detector, with and without selector, when applying to
images in the test subset, showing the percentage of improvement.

Image Without sel. With sel. % improv.

Lo1 0.387 0.440 13.6
Lo4 0.285 0.375 31.4
L05 0.231 0.329 42.5
L12 0.184 0.372 101.9
L17 0.188 0.489 160.3
L18 0.186 0.391 110.2
L26 0.238 0.398 66.9
L34 0.247 0.308 24.7
L41 0.218 0.367 68.3

5 Conclusions and future research

In this work, a selection system has been presented that, starting from a con-
ventional edge detection, eliminates the influence of background edges partially,
which is particularly important when the edge map is used to extract the boun-
dary of an object, mainly if deformable models or genetic algorithms techniques
are applied.

The requirement of needing reference images can be seen as a serious draw-
back for the use of this technique, because its generation could be hard and te-
dious. Nevertheless, if we are using parametric shape models for the subsequent
boundary extraction, as PDM [3,12], the labelling of the points (which could
be obtained with semi-automatic methods) can be used to define the reference
images too, linking the points with lines.

We are now trying to improve the selector in two aspects. On one hand, other
parameters are being considered to characterize the windows, obtained through
parameter extraction techniques, based on PCA and ICA, applied to windows
data. On the other hand, we are considering to apply our technique to color
images, which have more information to identify whether an edge corresponds
to the searched object or not.

Acknowledgements

This work has been supported in part by the Junta de Extremadura through
project 2PR0O1A007. We are also indebted to the staff of the Centro de Seleccion
v Reproduccién Animal (CENSYRA) of Badajoz for their technical assistance
with the cattle and the photographs.

References

10.

11.

12.

. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Journal of

Computer Vision 1 (1988) 321-331

Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and
balloons for 2-d and 3-d images. IEEE Tran. on Pattern Analysis and Machine
Intelligence 15 (1993) 1131-1147

Hill, A., Taylor, C.J.: Model-based image interpretation using genetic algorithms.
Image and Vision Computing 10 (1992) 295-300

Toet, A., Hajema, W.P.: Genetic contour matching. Pattern Recognition Letters
16 (1994) 849-856

Toet, A.: Target detection and recognition through contour matching. Techni-
cal report, CALMA (Combinatorial Algorithms for Military Applications) project
(1994)

Parker, J.R.: Algorithms for image processing and computer vision. John Wiley
(1996)

Srinivasan, V.: Edge detection using neural networks. Pattern Recognition 27
(1994) 1653-1662

Wong, H.S., Caelli, T., Guan, L.: A model-based neural network for edge charac-
terization. Pattern Recognition 33 (2000) 427-444

Suzuki, K., Horiba, I., Sugie, N.: Neural edge detector — a good mimic of conven-
tional one yet robuster against noise. Lecture Notes in Computer Science 2085
(2001) 303-310

Riedmiller, M., Braun, L.: A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In: Proc. IEEE International Conference on Neu-
ral Networks. (1993) 586-591

Gonziélez, H.M., Garcia, C.J., Macfas, M., Acevedo, M.I.: GA techniques applied
to contour search in images of bovine livestock. Lecture Notes in Computer Science
2084 (2001) 482-489

Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models
for locating structures in medical images. Image and Vision Computing 12 (1994)
355-366

