
Abstract.   The satisfiability problem or SAT for short and many of its variants have been widely and constantly studied these last
two decades. Competitive general purpose algorithms based on meta-heuristics like genetic algorithms, taboo search and scatter
search are known for this problem. This paper introduces the ant colonies approach for the maximum weighted satisfiability problem,
namely MAX-W-SAT. This meta-heuristic inspired from the real cooperative behavior of ant colonies searching for food has been
proposed and then improved recently to solve hard combinatorial optimization problems. We describe an ant colonies algorithm for
MAX-W-SAT called AC-SAT and provide an overview of the results of the empirical tests performed on the hard Johnson
benchmark. A comparative study of the algorithm with well known procedures for MAX-W-SAT is done and shows that AC-SAT
outperforms the other evolutionary meta-heuristics especially the scatter search, which has been developed very recently.
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1 Introduction
Many NP-complete problems are better solved now than in the past. One undeniable reason of the improvement in
solutions quality and running time is the development of an important number of new powerful meta-heuristics. If the
problems sizes have been very limited in getting a reasonable execution time in the nearest past, larger ones are more
manageable nowadays. They have increased in a tremendous way mostly because of the competition of new approaches
and the recent physical machines performances.

The algorithm A* has marked the beginning of the introduction of heuristics in solving complex problems. Since
then a plethora of meta-heuristics approaches often inspired from natural phenomena have been developed. They have
contributed greatly in problem solving since they are simple for use in most situations. Simulated annealing, genetic
algorithms, taboo search and scatter search are examples of  these methods.

The ant colonies or AC for short is another meta-heuristic mimicking the real behavior of ants colonies when
searching for food. The approach has gained a large reputation since it has solved with success many combinatorial
optimization problems like the traveling salesman problem or TSP[8], the quadratic assignment problem or QAP[13],
the vehicle routing problem or VRP[4] and the job shop scheduling problem or JSSP[7].

The maximum weighted satisfiability problem or MAX-W-SAT is an NP-Hard optimization problem. Many meta-
heuristics have been tested for this problem and for SAT. We can mention among these works, genetic algorithms[12],
taboo search[1,19], simulated annealing[16] and recently scatter search[11]. In this paper, the AC approach is proposed
for this problem. An algorithm has been designed and tested on the real-life Johnson problems. Numerical results are
compared with those of other well known approaches and in particular with scatter search.

2 The MAX-W-SAT Problem
The satisfiability problem or SAT in abbreviation is a problem of logic. Its importance and reputation come from the
fact that logic is a theoretical tool used in problem solving and many other domains.

SAT is defined to answer the question whether there exists an interpretation of variables that satisfies a logical
formula written in the setting of propositional or first order calculus. In this work, only propositional formulae are
considered, which present yet a complex problem. Since every well formed formula can be converted in a conjunction
of disjunctions of literals, an instance of SAT is often presented in this simple form. More precisely, an instance of SAT
is a set of clauses, a clause being a disjunction of literals and a literal is defined to be a Boolean variable with or without
a negation. If the number of variables is equal to n and the number of clauses equal to k then the pair (n,k) constitutes
the problem parameters.

When a valuation of variables satisfies all the clauses of the instance, we say that the instance is satisfiable.
Otherwise when no instanciation of variables satisfies all the clauses simultaneously, we say that the data is
contradictory. In this situation, another preoccupation arises: find an assignment that satisfies the maximum number of
clauses. This problem is known as the maximum satisfiability problem or MAX-SAT. When weights are associated to
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clauses, the goal is to find the assignment that maximizes the sum of weights of the clauses that are simultaneously
satisfied. The related problem is called maximum weighted satisfiability problem or MAX-W-SAT.

Example of an instance of SAT

x1 + -x3 + x4

 x3 + -x4 + -x5

-x2 + x3 + -x5

This is an instance of three clauses having each three literals built over five Boolean variables x1, x2, x3, x4 and x5. The
plus sign denotes the Boolean disjunction  operator while the minus expresses the unary negation connector. This
instance is also called 3-SAT because each clause has a length equal to 3, the length is defined to be the number of
literals in the clause. In general, a r-SAT instance is a data where all the clauses have a length equal to or less than r.

A great number of research works have been devoted to SAT and its important variants all around the world these
last two decades. Results on both the theoretical and practical settings are known but are not sufficient to answer the
question whether the class of non polynomial problems coincides with the class of polynomial ones. We know that SAT
is NP-complete in general, and that 2-SAT and Horn-SAT (restricted to Horn clauses) are polynomial. However r-SAT
for r>= 3 and MAX-SAT are NP-complete. The optimization version of MAX-SAT is NP-hard. On the other hand,
exact algorithms like DPP[3,5], many heuristics like John1, John2[18], GSAT[22] and numerous meta-heuristics like
GRASP[21], simulated annealing[16], genetic algorithms[12] and taboo search[1,19] have been written for SAT and its
variants.

3 The Ant Colonies Optimization
The ant colonies optimization meta-heuristic or ACO has revealed its efficiency for many combinatorial optimization
problems. It is based on a simple mechanism of communication between artificial agents imitating the behavior of real
ants.

The ants are capable of cooperating in searching in a collective and asynchronous manner an optimal path linking
the food source to their nest. They  start exploring the food source in a random way. Then, they take their itinerary
through a search space according to probabilistic decision rules.

The ants build the solutions in a progressive manner. When an ant finds food, that is when a solution is built, it
evaluates partially the obtained solution and deposits on its way back to the nest a hormonal substance called
pheromone in order to guide and help the other ants to get straightly to the food source.

 A concise translation of the ant colonies behavior can be described by the following general algorithm:

Begin
Generate a population of ants
initialize the pheromone
repeat for each ant until stop condition
begin

build the solution using the pheromone
update the pheromone table

end
end

4 Solving MAX-W-SAT with ACO
The implementation of the meta-heuristic for our problem requires the design of the following components: the

artificial world where the ants live, the solutions or ants representation, the fitness function that evaluates solutions, the
probabilistic rules that direct the ants movements and the strategy of updating the pheromone.

4.1 The Artificial World or Search Graph

According to the nature of MAX-W-SAT problem, the search space is a hypercubic  graph, G = (V,E) such that:

•V = {O,1}n is a finite set of vertices, each vertex corresponds to a truth assignment of variables, the total number of
these vertices is equal to 2n

•E = {(x,y)  such that  x and y ∈ V and have only one different bit}, the total number of the edges is equal to  n2n-1
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In this graph, some vertices represent the food sources for the ants, they correspond to optimal solutions. Other
vertices represent the ants nests and correspond to initial solutions. The artificial ants are supposed to cross a part of the
graph in order to find the shortest path existing between initial and optimal solutions. Since a  hypercubic graph is a
Hamiltonian graph, it allows the ants to reach any vertex from any other one in less than n moves.

The ants store pheromone in the vertices they visit. An auxiliary structure associated with a vertex is necessary to
memorize the pheromone quantity deposited by ants.

4.2 The Solutions or Ants Representation

An optimal solution is a vertex denoting an assignment that minimizes the fitness function. Generally in most
evolutionary approaches, artificial agents represent problem instantiations that are to be improved towards the optimal
solutions. In MAX-W-SAT, a solution is clearly a truth assignment of the instance variables.

For the AC approach, the ants are artificial agents that cooperate in order to emerge the optimal solution. Each ant
possesses an internal memory for storing the current solution.

4.3 The Fitness Function

The objective or fitness function measures the solution quality. In SAT, this function counts the number of clauses
satisfied by the solution or the weights sum of the clauses satisfied by the solution in MAX-W-SAT. Note that this
function makes the only difference in the development of the AC algorithm for both problems.

4.4 The Initial Population
 The ants population is initially drawn at random. This population is modified by the ant process that generates
another population of agents having better characteristics in terms of solutions quality.

4.5 The Pheromone Structure
The pheromone information is structured as a table of two dimensions, one for the variables and the other for the

possible values that can be taken by these variables. Each time the pheromone is updated, it is stored in this table.

4.6 The Improvement Method
Our ants colonies approach is hybridized with an improvement method in order to increase the algorithm

performance. The improvement technique is applied to the initial solutions and even to the computed ones to enhance
their quality. It is in most situations context-dependent. For our problem, many heuristics exist and can be used for this
purpose. We can evoke the following ones: John1, John2[18], local search and G-SAT[22]. The last mentioned one is
time consumer, this is the first reason why local search has been chosen. The second argument for this choice is for its
simplicity. Our improvement method consists in choosing the best solution in the neighborhood of the current solution,
a neighbor is obtained by just flipping a bit. This operation is repeated until no improvement in the evaluation function
is observed.

4.7 The Overall Procedure
The process starts generating an artificial ants population and initializing the pheromone. Each ant has to construct a

solution using the pheromone information initialized by the process or communicated by all the other ants afterwards.
Once a solution is built, it is improved by means of a local search and the pheromone is updated. This phenomena
simulates the process of knowledge acquisition and the forgetting of the past.

The whole process is iterated until the optimal solution is found or after a certain number of iterations dictated by
the physical machine limits. The ACO procedure or AC-SAT can be summarized as follows:

Procedure AC-SAT;
Begin

Initialize the pheromone table using a heuristic;
Generate pop-size ants at random;
Best = any ant representing a solution;
for (Iter = 1 to max-Iteration) do

Begin
For each ant s  do
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Begin
 s’ = build-sol(s);
(*Build the solution using the pheromone*)
s’’ = Improve the solution s’;
if f(s’’) < f(best) then best = s’’;

End;
Update the pheromone;

End;
End;

Max-iter and pop-size are empirical parameters.

Let consider the following instance to better understand the main instructions of the algorithm:

x1 + x3 3
x1 + x4 4
x2 + x4 2
x2 + x4 1
-x1 2
-x2 3

The pheromone table called phero is a matrix of two dimensions. The lines are indexed by the problem variables and
the column specifies the positive or negative form of the literal. An entry in the table reports the pheromone quantity
brought by the literal. The table is initialized as follows:

∑weight(cj)
Phero[xi,k] = ________________

∑weight(ck)

where ck is any clause and cj  a clause containing xi if k =1and  –xi if k =0. The initialization of the pheromone table for
the example is shown in Table 1.

Table 1. Initialization of the pheromone table for the example

0 1
x1 2/15 7/15
x2 3/15 3/15
x3 0 3/15
x4 0 7/15

4.8 The Probabilistic Decision Rules

The solution is built by an ant according to the pheromone information. In fact, a certain number of bits of the current
solution will be changed according to the following formula:

Phero[xi,k]
P(xi=k) = _______________________________

Phero[xi,0]+ Phero[xi,1]

That computes the probability that a literal xi takes the Boolean value k. A random number is generated and
compared to this probability to deduce the value of the bit. The procedure that constructs a solution is as follows:
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Procedure build-sol (s : assignment) : assignment;
Begin

Let s = (x1, x2, …,xn);
For j := 1 to max-changes do

begin
draw at random a variable xi;
(* apply probabilistic decision rule *)
compute P(xi=0);
generate a random number r such that 0<=r<=1;
If r <= P(xi=0) then xi =0 else xi =1;

Return s;
End;

The total number of bit changes is denoted by max-changes and is set by empirical tests.

4.9 The Pheromone Updating

Our strategy is a delayed pheromone updating, that is it is undertaken once the ants finish their search cycle.  The
evanescence process is first simulated by decreasing the pheromone values according to the following formula:

Phero[xi,j] = (1-α)  phero[xi,j] for i=1..n and j∈{0,1}

Where 0<α<1 is the fourth empirical parameter.
The pheromone is then reinforced by the quality of the solution found such that each ant contribution is inversely

proportional to the solution evaluation. This pheromone is weighted by the ratio of the difference in quality between the
current and the worst solution on the difference in quality between the best and the worst solution.

          1 f(worst)-f(s)
Phero[xi,j] = (1-α) phero[xi,j] + α ________  x  __________________  

          1+f(s) f(worst)-f(best)

α allows the control of the pheromone quantity added. When it is close to 1, the ants become unstable because of the
lack of the pheromone. However when it is close to 0, the solutions do not progress toward the optimal ones.

5 Numerical Results
The procedure AC-SAT has been implemented in C on a Pentium personal computer and numerical tests have been
performed on benchmark instances available on the web site given below. These hard problems translating real-life
problems have been converted from the Johnson class of the second DIMACS Challenge implementations. The weights
of the clauses have been drawn from 1 to 1000 and assigned at random to clauses, the number of clauses being ranging
from 800 to 950. The Johnson class namely ‘jnh’, has been used in many works for testing algorithms performance. It
includes three subclasses characterized by the variables number, which is equal to 100 for all instances. The clauses
number is

•800 for the subclasse1: Jnh201 ..Jnh220

•850 for the subclass 2 : Jnh01..jnh19

•900 for the subclass 3 : Jnh301..Jnh310

Each subclass contains instances that are satisfied or not. On each instance, 10 executions have been undertaken. The
solutions quality as well as the running time have been considered as performance criteria.

5.1 Parameters Setting

Preliminary tests have been carried out in order to fix the key parameters of the AC-SAT algorithm. Figure 1 shows an
example of the results of the tests done on some Johnson problems for setting the parameter max-iter. Identical tests
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have been performed on all the other instances and for all the other parameters. Table 2 summarizes  the parameters
values obtained after theses extensive experiments.

5.2 Performance Comparison

Comparison of AC-SAT with SS-SAT, GRASP and the optimal solution is done. GRASP is a parallel greedy
algorithm proposed for solving MAX-W-SAT[21]. It has been considered in this comparison because of its high
efficiency.  SS-SAT is another evolutionary algorithm based on scatter search approach and recently developed [11].

Table 3 contains for each Johnson problem, the optimal solution and the best  solution found respectively by AC-
SAT, SS-SAT and GRASP. The bold numbers represent the best values found. Their number is clearly more important
for AC-SAT. this fact translates that AC-SAT outperforms  SS-SAT and also GRASP for most instances of problems.
Besides, the most important observation is that for most instances, solutions provided by AC-SAT are equal to the
optimal solutions and for the other cases, the difference between both solutions is almost null.
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443500
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444500

445000

Jnh301 Jnh304 Jnh308 Jnh310

5 Iterations

15 Iterations

30 Iterations

50 Iterations

figure1.   The results of tests for setting the parameter max-iter

Table 2. Empirical parameters values for AC-SAT

Pop-size 6

α 0.1

maxchanges 50

Max-iter 30
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Figure 2. A schematic comparison between ac-sat, ss-sat, grasp and the optimal solution for the subclass jnh01-Jnh19
                     
http://www.research.att.com/~mgcr/data/index.html
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The execution time of AC-SAT is also very competitive and more interesting than that of SS-SAT. A schematic
view of these results is shown through the curves of Figure 2, Figure 3 and Figure 4. The same remark can be done on
the performance of AC-SAT.
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Figure 3. A schematic comparison between ac-sat, ss-sat, grasp and the optimal solution for the subclass jnh201-jnh220
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Figure 4.  A schematic comparison between ac-sat, ss-sat, grasp and the optimal solution

6 Conclusion

In this paper, an ant colonies algorithm called AC-SAT has been designed and tested for the maximum satisfiability
problem. Through the empirical results, AC-SAT outperforms the scatter search algorithm recently developed and the
best version of GRASP. It also finds the optimal solutions for the majority of Johnson problems. For the others, the
solution obtained is very close to the optimal one.

The robustness of the AC method relies on the design of the solution construction procedure based on probabilistic
decision rules, the pheromone updating strategy and its hybridization with an improvement technique. For the time
being, we are studying and experimenting the parallelization of the AC approach for MAX-W-SAT in order to achieve
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increase in performance in terms of solutions quality and running time. The results will be communicated in the near
future.

Table 3. Experimental results comparing  AC-SAT,  SS-SAT, GRASP and the optimal solutions

data Opt sol Ac-sat ac-sat
time (s)

ss-sat ss-sat time
(s)

Best of grasp

Jnh01 420925 420925 107.15 420892 203.99 420737
Jnh10 420840 420840 179.25 420479 901.47 420565
Jnh11 420753 420674 200.15 420141 439.82 420642
Jnh12 420925 420925 124.65 420701 250.65 420737
Jnh13 420816 420816 192.94 420716 930.12 420783
Jnh14 420824 420824 237.23 420616 298.22 420592
Jnh15 420719 420719 240.26 420632 624.63 420429
Jnh16 420919 420914 297.18 420889 716.51 420851
Jnh17 420925 420925 222.71 420794 401.95 420807
Jnh18 420795 420795 210.71 420404 129.64 420372
Jnh19 420759 420680 204.75 420330 403.10 420323

Jnh201 394238 394238 162.56 394238 161.72 394238
Jnh202 394170 394170 184.26 393752 269.99 393983
Jnh203 394199 394135 191.78 393876 294.10 393889
Jnh205 294238 394238 283.75 394060 203.37 394224
Jnh207 394238 394237 122.36 394107 313.58 394101
Jnh208 394159 394159 186.71 393560 137.19 393987
Jnh209 394238 394238 186.20 394238 395.38 394031
Jnh210 394238 394238 219.12 394067 394.46 394238
Jnh211 393979 393979 187.56 393742 408.04 393739
Jnh212 394238 394227 188.78 394082 758.00 394043
Jnh214 394163 394163 193.67 394152 1159.15 393737
Jnh215 394150 394150 184.37 393942 202.51 393858
Jnh216 394226 394226 189.13 393933 391.10 394042
Jnh217 394238 394238 144.6 394238 799.40 394232
Jnh218 394238 394238 217.12 394238 755.92 394099
Jnh219 394156 394070 130.45 393942 236.38 393792
Jnh220 394238 394238 166.23 393985 430.44 394053
Jnh301 444854 444807 204.4 444842 1267.63 444670
Jnh302 444459 444459 260.2 443895 698.77 444248
Jnh303 444503 444457 222.32 444223 437.91 444244
Jnh304 444533 444533 310.11 444533 1175.98 444310
Jnh305 444112 443970 330.28 443594 463.33 444112
Jnh306 444838 444838 321.46 444515 604.53 444658
Jnh307 444314 444314 231.45 443662 128.35 444159
Jnh308 444724 444621 116.15 444250 270.98 444222
Jnh309 444578 444578 211.02 444483 662.58 444349
Jnh310 444391 444353 247.29 444313 132.63 444282
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