An Agent Model for a Railway Consist
Communication System

M.J. Fernandez-Iglesias and J.C. Burguillo-Rial

Departamento de Ingenieria Telemdtica
{manolo, jrial}@det.uvigo.es,
WWW: http://www-gist.det.uvigo.es
ETS de Ingenieros de Telecomunicacién
Campus Universitario S/N
36200 Vigo (SPAIN)

Abstract. In this paper we describe a case study to illustrate the use
of a multi-agent system for designing and modeling an on-board com-
munication system for railway consists. Selected elements in the railway
consist has been modeled as agents with a simple belief, desires and in-
tentions (BDI) architecture that interact among them to satisfy an over-
all goal, namely trainset security. This goal can be further refined into
consist registration, detection of exception events and control of consist
vehicles through command execution.

1 Introduction

Over the past three decades, software engineers have faced the problems and
circumstances related with software complexity in concurrent and distributed
systems. Among them, it is now widely recognized that interaction is probably
the most important single characteristic of complex software.

Since the 1980s, software agents and multi-agent systems have grown to be-
come one of the most active areas of research and development in computing.
The agent concept stands for an autonomous system, capable of interacting with
other agents in order to satisfy its design objectives. Nowadays, an increasing
number of distributed computing systems are being viewed in terms of interact-
ing, semi-autonomous agents.

Having in mind that there is no general agreement about what exactly an
agent is, we denote an agent as a system that enjoys [7] autonomy, that is,
agents encapsulate some state information and take their own decisions based
on such state; reactivity, because agents are situated in an environment, which
they are able to perceive and to respond to its changes; pro-activeness, as agents
do not simply act in response to their environment, but are able to exhibit goal-
directed behaviour; and social ability, because agents interact with other agents
or humans via some kind of agent communications, and typically have the ability
to engage in social activities, such as problem solving or negotiation, in order to
achieve a common goal.

The greatest potential of agent architectures relies on the multi-agent con-
cept. Multi-agent systems are ensembles of agents, acting independently from
each other to accomplish their own tasks. For this, they have to interact with
other agents, humans and with their environment to gather the information or
services they need. Additionally, an agent might have to coordinate its activities
with other agents in the society to ensure that overall goals can be met. This
concept raises the emergence of agent societies.

In this paper we describe a case study to illustrate the use of a multi-agent
system to design and model an on-board communication system for railway
consists. Every agent is modeled using a simple BDI architecture [1] with data
structures representing beliefs, desires, and intentions of agents, and functions
that represent deliberation and means-end reasoning. Intentions play a central
role in the BDI model: they provide stability for decision making, and act to
focus the agent’s practical reasoning.

The remainder of the paper is structured as follows. Section 2 describes the
main characteristics of the system to be modeled. Section 3 introduces an agent
society to manage the interactions among the different elements in the consist.
Finally, Section 4 presents the conclusions.

2 System Description

The target system is composed of a base station, typically placed inside the
engine, and several slave stations, located inside consist units, typically one inside
each wagon (see Fig. 1).

[BE J| B Jeo] BB || BE Je] B |
NSNS NS NS N
C | || || |

I |

[GONIOG OO O O O (@]

Fig. 1. System outline

The objective (i.e. overall goal of the system) is to guarantee trainset security.
On the one side, it permits the engine to keep track of the consist configuration
(i-e. which wagons are coupled to the consist, in which order, etc.). On the other
side, it supports the activation of consist devices like doors, air conditioning,
security equipment or information pannels, and the communication of alarm or
exception conditions back to the engine.

The overall behaviour of this system is as follows:

1. Stations communicate with their neighbors through an appropriate com-
munication channel. All intermediate stations have two active bi-directional

Table 1. System messages

Message Pars. Orig/Dest Meaning

REG
NEW
LAST
TOK
ACT
LACT
coM
RESP
LRSP

- B — S Proceed to register
id S — B I am station id
id S — B 1 am the trailing station (id)
- B — S You are alive?
id, alm S — B id is alive. Besides, I am sending alarm alm
id, alm S — B id is alive (trailing). Besides, I am sending alarm alm
id, cid B — S id should execute command cid
id, rinfo S — B id executed a command. Results are rinfo
id, rinfo S — B id (trailing) executed a command. Results/alarms are

rinfo

connections, whereas the base station in the engine and the slave station in
the trailing wagon have a single bi-directional active connection. Messages to
be transferred using these communication channels are summrized in Table
1.

. The base station initiates a registration process for slave stations to register
at the base. The process is initiated by a REG message that is propagated
along the train. Upon reception of this message, a slave station answers
with a NEW message and propagates the REG message to the rest of
the consist. NEW messages are propagated back to the engine. The last
wagon in the consist responds with a LAST message instead of a NEW
message. The trailing position in the train is detected through a TIM EOUT
(timeout) perceipt from the environment. This timeout event is signalled by
the underlying low-level communications layer.

. Once all stations are registered, the base station knows the relative position
of all components of the consist. From this moment, the base station can:

— Check the availability of the components of the consist asking for a heart-
beat. The base station generates a TOK message that is propagated
along the consist. Upon reception of this message, slave stations in wag-
ons respond with an ACT message. The last station responds with an
LACT message. ACT and LACT messages in their way to the base
station are propagated back by slave stations.

— Send commands to slave stations. These commands are intended to acti-
vate devices in wagons or to check the status of wagon components. For
this, the base station generates an (addressed) COM message instead of
a TOK. The COM message is propagated downstream to the destina-
tion slave station, which responds with a RES P message and generates
a TOK message to be forwarded to the rest of the downstream slave
stations. Slave stations not in the destination list of the COM message
respond to the base station with an ACT/LACT message. If the desti-
nation station is the trailing one, it responds with an LRSP message.

The (slave-generated) messages are propagated upstream by intermedi-
ate stations until they reach the base station.
4. Slave stations may autonomously generate alarms that are transmitted as
parameters in the corresponding ACT /LACT or RSP/LRSP messages.

3 System modelling as an agent society

Along the next paragraphs we model this train management system following
an agent-oriented approach. Firstly, we briefly introduce the syntax and seman-
tics of the language used to model agent behaviour. Then, we propose an agent
decomposition of this problem to construct a multi-agent system or agent so-
ciety, identifying inter-agent communication mechanisms. Finally, we describe
the behaviour of agents in the society. Due to space restrictions, non-common
procedures like on-the-fly coupling and uncoupling of cars are omitted from this
description. For a more detailed description of this system see [3].

3.1 Notation

Individual agents follow a model inspired in the Belief-Desire-Intention (BDI)
model [1], in the sense that decision making depends on the manipulation of data
structures representing the beliefs, desires and intentions of agents. However,
compliance to concrete architectures implementing this model has been sacrified
in favor of more concise and easier to implement agent specifications.

To simplify system analysis and description, bi-directional communication
through physical channels has been modelled using two uni-directional chan-
nels. Channel operations are defined using the usual constructors available in
languages like Promela [4] or LOTOS [5]. Channels pass messages in first-in
first-out order:

— The statement gnamelexpr sends the value expr (variable or constant) to
the chanel gname.

— The statement gname?msg retrieves a message from the head of the channel,
and stores it in variable msg. The receive operation is executable only when
the channel addressed is nonempty. A receive operation on an empty channel
gets blocked until data is available in the channel.

— The statement gname?msg[cond_expr] is executable only if the chanel is
nonempty and the message at the head of the channel matchs expression
cond_expr, i.e. [cond_expr] represents a guard for the receive operation.

Individual agents are defined inside an agent / endagent environment.
Flow-control sentences and statement separator “;” have their usual meanings,
as do the usual boolean and arithmetic operators. Besides, special functions are

defined to represent specifics of the BDI model. To manage belief we define:

— UpdateKB(KB, Expr). This function updates an agent’s knowledge base. The
first parameter references the knowledge base to be updated. The second
parameter expresses a fact as a first order expression.

— GetKB(KB, Expr). This function is used to extract information from the
knowledge base passed as a parameter. Extracted information is kept in the
local store of the invoking agent.

— Known(KB, Expr). This function returns TRUE if the fact expressed by its
second parameter can be deducted from the referenced knowledge base (first
parameter).

To manage desires and intentions, the functions below are available:

— SetGoal(Gid, Expr). Agents call this function to state their goals. The first
parameter assigns an identifier to the goal. The second parameter is an
expression that defines the goal, the result to be accomplished to fulfill the
goal. For goals involving channels (i.e. agent perceptions and actions), two
additional operators are available:

e Receive(chanID, Expr). The goal is to receive specific information through
a given channel. This operator has two parameters: the first one identifies
the channel involved, and the second one the information that should be
received to fulfill the goal.

e Send(chanID, Expr). The goal is to successfully send information through

a channel. Its parameters are defined in a similar way to Receive.
— CheckGoal(Gid). This function returns TRUE if the goal referenced has been

accomplished, and FALSE otherwise.
— DropGoal(Gid). The goal referenced is removed from the goal list.

3.2 Agent Model

The system described above will be modeled by the agent hierarchy depicted in
Fig. 2. These hierarchy is composed by the the following elements:

out—inl outr inl outr— - —inl outri—
Base Slave 1 Slave 2 Slave n
in outl inr outl inr [T *out inr [

Fig. 2. Multi-agent system for on-board communications

— An agent acting on behalf of the base station, which implements engine’s be-
haviour. This agent is composed by several cooperating agents, each of them
in charge of one of the distinct procedures defining the communications pro-
tocol (registration, command generation, activity control, alarm reception).

— Several agents acting on behalf of their respective consist components (i.e.
slave stations). As for the base station agent, these agents are composed by
several cooperating agents implementing distinct aspects of the communica-
tion system.

Base

| gout
— ot BaseReg
in T
out Lo
Scheduler et o BaseAct
in 1@
out |
— ctrl BaseComm

Fig. 3. Multi-agent system for on-board communications

The agent hierarchy for the base station is outlined in figure 3. The hierarchy
for slave stations is defined in a similar way. For each station in the trainset,
overall agent behaviour is organized by the Scheduler. This agent is a goal-based
agent whose behaviour is outlined in figure 4 [6].

/ sensors ReportXXX |
<

What the world is
How the world evolves? ' like now?

= ~
What my actions do? A\ What it will be like
& v

F if | do action A
Knowledge|
Base
Scheduler i
channel

Fig. 4. Outline of agent Scheduler

(sjusbe Jsyjo) Juswoliaug

"a What action |
should do now?
_' Which agent
should | activate?

Along the next paragraphs we describe agent’s behaviour and interactions
to successfully accomplish the main procedures for which this system has been
designed, namely consist registration, activity control, and command execution.

For the sake of clarity, we assume that the base station is the leftmost element
in the system, and slave stations are coupled to its right. Then, the trailing
station will be the rightmost one.

3.3 Consist Registration

Consist registration is achieved through the cooperation of agents BaseReg at
the base station and active SlaveReg placed at slave stations in the consist. These
agents are activated by the corresponding Scheduler agent when a registration
process is required.

Behaviour of agent BaseReg is outlined in figure 5. This agent is dormant
until it perceives a Scheduler-generated SY NC BR message through the control
channel. Then, it sets as its goal to perceive a LAST message from its environ-
ment, more specifically through its input channel. It generates a REG message
to be sent to the adjacent station and waits for messages coming through it in-
put channel. On arrival of NEW messages, the knowledge base is updated with
new stations IDs. The process continues until a LAST message is received or
an unexpected event occurs (default clause). Before becoming dormant again,
it checks its goal and raises an exception if the goal has not been fulfilled. Ex-
ceptions are captured by the Scheduler, and may be due to events like coupling
and uncoupling of cars, failures in the underlying communication channel, etc.

agent BaseReg(chan in, out, ctrl) is
while (TRUE) do
ctrl?msg[msg == SYNCBR];
Update K B(Base, {slist := [|});
SetGoal(RegAll, Receive(in, LAST));
out!REG; in?(msg, id); finish := FALSE;
while (finish) do
case msg of
NEW: UpdateKB(Base, {slist := slist++][id]})
LAST: finish := TRUE
default finish := TRUE
endcase endwhile
if (!CheckGoal(RegAll) then raise(ExReg)
endwhile
endagent

Fig. 5. Registration. Base station

Behaviour of slave stations is described in figure 6. As in the previuos case,
this agent is activated by the scheduler. Its first task is to update slave station’s
knowledge base stating its IDs as defined by the scheduler. Then, it becomes
dormant until a registration process is needed. This agent’s goal is to send back
to its peer at the left a LAST message. Once stated its goal, it waits for incoming
messages from the left. When the agent perceives a REG message, generates a
base station-bound NEW message and propagates the REG message to the
right. Then, it forwards all incoming messages to the left. If this agent perceives

that its station is the trailing one, updates the knowledge base stating this fact
and generates a LAST message.

Once the process is finished, it checks its goal and raises an exception if the
goal has not been fulfilled. Then, it becomes dormant again.

agent SlaveReg(int addr; chan inl, outl, inr, outr, ctrl) is
UpdateKB(Slave, {my_addr := addr});
while (TRUE) do
ctrl?msg[msg == SYNCSR];
SetGoal(RegAll, Send(outl, LAST);
inl?msg[msg == REG];
outl!(NEW, addr); outr!REG;
inr?(msg, id); finish := FALSE;
while (!finish) do
case msg of
NEW: outl!(msg, id)
LAST: UpdateKB(Slave, {imlast := FALSE});
outl!(msg, id); finish := TRUE
TIMEOUT: UpdateKB(Slave, {imlast := TRUE});
outl!(LAST, addr); finish := TRUE
default finish := TRUE
endcase endwhile
if (!CheckGoal(RegAll) then raise(ExReg)
endwhile
endagent

Fig. 6. Registration. Slave station

Note that individual agents participating in the process do not explicitly
worry about agent registration. As for other adequately defined multi-agent sys-
tems, we can say that this agent society will achieve a more complex goal (i.e.
consist registration) than the mere aggregation of individual agent’s goals (i.e.
perceiving a designated message and generating the corresponding answer). In
other words, agent collaboration is a key issue in this system.

3.4 Heartbeat activity control

Activity control is performed through the cooperation of agents BaseAct and
active SlaveAct placed in the consist. The procedure is similar to that of regis-
tration. In this case, BaseAct’s goal is to construct a list of active stations that
matchs that of registered ones (see Fig. 7).

Slave stations’ goal is to send back to the base station a LAST message. First,
slave stations autonomously decide, after consulting their knowledge base, if they
will send an alarm to the base station. This proactive action will trigger specific
messages that will in turn modify the behaviour of the base station. Function

agent BaseAct(chan in, out, ctrl)
while (TRUE) do
ctrl?’SYNCBA;
actl := []; SetGoal(CheckAct, {actl == list});
out!TOK; in?(msg,id,pars); finish := FALSE;
while (not(finish)) do
case msg of
ACT: actl := actl++[id]; ReportAlm(id, pars)
LACT: actl := actl++[id]; ReportAlm(id, pars); finish := TRUE
default finish := TRUE
endcase endwhile
if ! CheckGoal(CheckAct) then raise(ExAct)
endwhile
endagent

Fig. 7. Activity control. Base station

ReportAlarm will affect the behaviour of the Scheduler at the base station and
cooperating agents BaseReg, BaseAct and BaseComm through synchronization
channel ctrl.

Then, SlaveAct states its position (last, middle) consulting the corresponding
knowledge base. Its behaviour depends on this: a trailing station will not forward
messages to the right, but generate a LAST message itself.

3.5 Command Execution

Command execution is initiated by the base station through agent BaseComm
when activated by the Scheduler. This latter agent decides to send a command
to a designated slave station depending on its perceptions (engineer interaction
thorugh the command interface, BDI status, etc.). Then, it activates BaseComm
through the control channel.

Then, BaseComm fetches the command to be sent and discover the position
of the addressee in the trainset. With this information, it sets as its goal the re-
ception of the appropriate response message. Once the command is sent through
the output channel, this agents fetches all incoming messages and classifies them
as alarms, heartbeat messages or responses. Once the polling cycle is completed
with the reception of a last-type message, the status of the goal is checked before
becoming inactive again.

4 Conclusion

We have described a case study to illustrate the use of a multi-agent system to
design and to model an on-board communication system for railway consists.
Every element on the railway consist has been depicted as an agent that inter-
acts with the rest of the components to satisfy an overall goal. Such agents are
modeled using a simple belief, desires and intentions architecture.

This approach has several benefits with respect to other approaches. On the
one side, implementation is drastically simplified. The agent society is composed
of agents implemented as simpler pieces of code that interact through communi-
cation channels. Individual agent’s goals are straightforward and easy to check,
and the system functionality is a consequence of agent interaction and cooper-
ation. Overall system goals are not explicitly implemented by agent’s code (i.e.
agents do not need the whole picture for the system to perform its duties). This
reduces the requirements on the supporting platform. For example, slave sta-
tions could be implemented in a low-end microcontroller/single schip computer
with reduced memory and computational power. On the other side, the modular
approach together with agent orientation directly supports design for testabil-
ity. Individual agents can be tested and validated independently, because goals,
behaviour and communications for each agent are defined keeping at a mini-
mum references to the global behaviour. Once individual components have been
validated, global system testing can be specifically aimed to inter-agent commu-
nications, reducing the resources needed for testing. Besides, this model supports
new approaches to testing like heuristic-driven testing [2].

In the case study presented, every agent coordinates its activities with the
other agents to achieve the proposed goals: consist registration, heartbeat ac-
tivity control and command execution. The overall system can be considered as
an agent society wherein every agent only knows a piece of the global problem,
which globally managed by means of communication and cooperation. In this
context, we may see an example showing that the composed system has added
value with respect to the simple aggregation of its parts.

References

1. M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and resource-bounded prac-
tical reasoning. Computational Intelligence, 4:349-355, 1988.

2. J.C. Burguillo-Rial, M.J. Ferndndez-Iglesias, and Martin Llamas-Nistal. Heuristic-
driven test case selection from formal specifications. a case study. In Procs. of Formal
Methods Europe 2002, Lecture Notes on Computer Science. Springer Verlag, 2002.
To appear.

3. M.J. Ferndndez-Iglesias and J.C. Burguillo-Rial. An agent model for a railway
consist communication system. Technical report, Grupo de Ingenieria de Sistemas
Telemadticos. Universidade de Vigo, ETS de Ingenieros de Telecomunicacién. Cam-
pus Universitario S/N. 36200 Vigo (SPAIN), 2002. mailto:manolo@det.uvigo.es.

4. G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

5. ISO. Lotos a formal description technique based on the temporal ordering of obser-
vational behaviour. International Standard, 1989.

6. Stuart Rusell and Peter Norvig. Artificial Intelligence. A Modern Approach, chap-
ter 2, page 31. Prentice-Hall Inc., 1995.

7. Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and prac-
tice. The Konwledge Engineering Review, 10(2):115-152, 1995.

