Convex Hull in feature space for Support Vector
Machines

Edgar Osuna! and Osberth De Castro?

! Departamento de Computacién
Universidad Simén Bolivar
Aptdo 89000, Caracas 1080-A
Venezuela
eosuna@bancomercantil.com
? Departamento de Electrnica y Circuitos
Universidad Simén Bolivar
Aptdo 89000, Caracas 1080-A
Venezuela
odcastroQusb.ve

Abstract. Some important geometric properties of Support Vector Ma-
chines (SVM) have been studied in the last few years, allowing researchers
to develop several algorithmic aproaches to the SVM formulation for bi-
nary pattern recognition. One important property is the relationship
between support vectors and the Convex Hulls of the subsets containing
the classes, in the separable case. We propose an algorithm for finding
the extreme points of the Convex Hull of the data points in feature space.
The key of the method is the construction of the Convex Hull in feature
space using an incremental procedure that works using kernel functions
and with large datasets. We show some experimental results.

1 Introduction

In the formulation of a SVM [1,2], we find that in feature space the decision
surface is always an hyperplane, and the classifier is always written in terms of
data instances that belongs to the outside of the boundaries of the classes. More
specifically, in the separable case, the boundaries of the classes contain the in-
stances of solution (support vectors), therefore we only need the points on those
boundaries. The boundaries of the data can be obtained from the Convex Hull
of each class. In particular, we only need the extreme points (vertices) of the
Convex Hull. We show a particular aproach to find these extreme points in fea-
ture space, using the so called kernel functions, a key part of SVMs formulation.
The application area for our method includes incremental training [3, 4], parallel
training, and reduction of the run time complexity of SVMs [5-7]. Related work
on convex geometry for SVMs geometry has been developed recently [8-10].

1.1 Support Vector Machines for Pattern Recognition

A Support Vector Machine (SVM) is a general optimal model for learning from
examples that has become practical in the last five years. This model for pat-

Fig. 1. (a) Relationship between the Convex Hull of a set of points and the smallest
hypersphere containing the same points. (b) The first Convex Hull obtained by finding
the smallest hypersphere.

tern recognition is based on the Structural Risk Minimization Principle and VC
theory, focused on finding the optimal decision surface in terms of the linear
function

Fx) =sgn Y5 aiK(x,8:) +b (1)

Where K maps the decision function into a high dimensional feature space
in which it becomes linear. For example, K can convert f(x) into a polynomial
classifier using K(x,y) = (x-y+1)?, or a Radial Basis Learning Machine using a
gaussian form, or a Multilayer Neural Network if we use a sigmoidal K(x,y) [1].
These kernel functions can be used under certain conditions. The more intuitive
condition is that K must satisty K(x,y) = #(x) - $(y) where & is a non linear
map to some inner product space in which the linear function lives. When the
hyperplane is on input space, K(x,y) =x-y.

The usual aproach to train SVMs is to solve a quadratic optimization prob-
lem with linear constrains, starting from the problem of finding the hyperplane
in feature space which maximizes the distance between the class boundary in
the separable case. The non separable case is solved by including error penalty
variables which transtate in the formulation by creating an upper bound on the
QP variables.

2 Finding the Extreme Points of a Convex Hull in feature
space

The problem of finding the Convex Hull of a set of points in feature space (also
called kernel space) is manageable only if the choosen method is able to make all
the calculations using the kernel function instead of mapping the points explicitly
in feature space. The kernel functions can be used by writing all the formulations
in terms of inner products of data points, which can later be replaced by kernel
function evaluations to obtain the final feature space formulation.

Let £ € RY be the set of points. The convex hull of a set of points £ is
defined by the set C = conv(L) that satisfy

conv(L)={x€eL | x= Zle Aix;} where >0 A =1, and X; >0 (2)

Thus, C are the set of points of £ that can be generated by convex combi-
nations of some subset of elements V € L. This subset V is the set of extreme
points of £, and the vertices of the smallest convex polyhedron containing L.
The method we show in this paper finds the subset V.

2.1 Finding the extreme points V

In order to find V , we use an incremental algorithm that uses the following
ideas:

1. Checking the containment of a point in a Convex Hull can be done by: 1.
Solving a convex quadratic optimization program formulated in terms of
inner products, so it can be solved in feature space, or 2. Solving a linear
program that tries of find a separating hyperplane between a point and the
rest of the data set.

2. Using a measure of the distance to the center of the smallest hypersphere
containing £ gives us admissible spatial knowledge in order to use heuristic
procedures to find V.

These ideas take us to an incremental algorithm that constructs the set V
based on the iterative inclusion of points in a candidate set of extreme points
Vo, based on whether it can be written as a convex combination of the points
on Vy. We use a from outside to inside inclusion order defined by the distance
of the point to the center of the smallest hypersphere containing £. We do this
until we have checked all the points. At the end, the algorithm has a candidate
Vo containing the solution V and some eztra interior points near the boundaries
of the Convex Hull defined by V. De final step is a one against all check, to
discard the extra interior points.

Initial Condition The most important condition is choosing the first Vy. It
can be shown that the points lying on the surface of the smallest hypersphere
containing £ are also in V (see figure 1(b)), then our first V, are these points.
The calculation of this hypersphere was done using a large scale incremental
implementation in feature space previously used with other aplications using
SVMs [11,6]. In what follows, given a set £, we will call the points on the
surface of the smallest hypersphere containing £, SphereSet(L).

The Algorithm Let V be the set of extreme points of £, and x € L. Suppose
that we have the functions SphereSet(L) and SphereSort(L). The first returns

12

asf

asl

sl

a2l

(b)

Fig. 2. (a) The Convex Hull of the Ripley dataset.(b) The Convex Hulls for classes +1
and -1 on Ripley dataset.

the subset of £ lying on the surface of the smallest sphere containing £, and the
second returns a descending sort list of £ by the distance to the center of the
same sphere. We have also the function CheckPoint(x,V) returning TRUE if
x belongs the interior of the Convex Hull defined by V. In what follows, V, is a
set of candidate extreme points.

ExtremePoints(L)

1. Initialize Vo = {Sphere(L£)}, and V = {)
2. Create the sorted list £* = {SphereSort(L)} — Vo
3. Until £* is empty
— Get first x € £*, update £* = L* — {x}
— If (CheckPoint(x,Vy) = FALSE) then Vo = Vo U {x}
4. Until Vy is empty
— Get next x € V),
— If (CheckPoint(x,Vy — {x}) = FALSE) then V =V U {x}

At step 4, Vo =V + A, where A is a set of extra points near the surface of the
boundaries of the Convex Hull, and V the set of extreme points. A is eliminated
in 4. The Algorithm passes once through all £, and twice on Vy. The advantage
of this algorithm is that it never uses all the points on a CheckPoint() opera-
tion, and the biggest set used is Vy. In most cases, the from outside to inside
incremental procedure allows us to obtain a small set 4. In the following sections
we give some remarks on the mathematical formulation in feature space for the
functions used by the algorithm.

3 Feature space Mathematics

In this section we present the mathematical formulation that allows us to use
the previous algorithmic aproach in feature space. Thus, we analize the functions
used in the section 2.1 on input and feature space.

3.1 Finding the Hypersphere of L

We use the same formulation used in [11, 6]. The problem of finding the radius
of the smallest sphere containing £ is solved by minimizing the largest distance
R between a variable center point a and every point x.

min max R(a,x;) (3)
a =1,...,¢

Which can be written in dual form as:
max iy MK (xi, xi) — ATQA where Qij = K(xi, ;) (4)
with constrains AT1=1, —A <0

Where K(x,y) is the kernel functions making the implicit mapping to feature
space for x and y and computing their dot product. The solution of this QP
yields the sphere radius R, the set of points lying on the surface (points whose
coefficient are A > 0), and a representation for the center a (as a linear combina-
tion of the points on the surface). The distance from any point y to the center
a can be obtained by:

d(a,y) = /¥ aiaiK(xi %)) + K(y,¥) = 25, ik (xi,¥) (5)

Where S is the set of surface points, x € S, and « are the variables in (4).

3.2 Checking a point y in a Convex Hull C defined by V

In this section we show a couple of formulations that allow us to check in feature
space the containment of a point in the interior of the Convex Hull C defined by
the vertices V.

Writing a point as a Convex Combination in feature space We have
formulated this problem as a linearly constrained convex quadratic optimization
program that minimizes an error measure between y itself and the aproximation
of convex combinations of points in V. If we can minimize this measure to cero,
y can be written as a convex combination of x € V. Formally,

niin TN = -2 ixi)> with YiiAi=1, and X\ >0, x,€V
1 (®)

Which can be reduced to an expression in terms of inner products in input space
as:

mgn f,A) =y'y+ATQA -2Y7 MxTy where Q;; = X;X; (7

with constrains AT1=1, —A <0, x; €V

Fig. 3. (a) Checkpoint Test on all the Ripley data set for a first Convex hull obtained
using the hypersphere calculation from section 3.1. (b) Values of the objective function
when ChecPoint(x, V) is formulated as a QP in section 3.2 the test.

Fig. 4. Separating hyperplanes and the extreme points. We can see that for the interior
points the hyperplane can’t be found.

We can traslate this QP to the feature space form replacing the inner products
by kernel functions, obtaining;:

min f(y,A) = K(y,y) + ATQA - 2377 MK (xi,y) where Qi; = K(xi,%;)8)
with constrains AT1=1, —A <0, x; €V

When we evaluate a point y outside C, the final objective function is f*(y, A) >
0. If y is inside the polyhedron defined by C then f*(y,A) = 0. Figure 3 shows
an experimental demonstration in the 2d dataset Ripley®. Figure 2(b) shows the
Convex Hull for each class of points (Ripley is a binary classification dataset).

Finding an extreme point using a Separating hyperplane The hyper-
plane separating a point x; € £ from the rest {£} — x;, must satisty
w-x; +b<=0 9)

3 Available on ftp://markov.stats.ox.ac.uk/pub/neural /papers

wW-X;+b>=0Vj#i

In order to formulate the problem of finding this hyperplane for any point in £,
not only the extreme points, we introduce penalty variables P for each point in
L. Therefore, we can formulate a problem wich tries to minimize P; for every
point. Formally,

: £
/\I,I;}gi >i=1 bPi (10)

with constrains Eﬁzl Ajxj X3 +b— P <=0
S AXj X+ b+ Po>=0Vz#i, P, P, >=0
Since the problem has the form of dot products, we can replace all of these
operations with kernel functions, obtaining the feature space formulation

: L
Jmin iz B (11)

with constrains Zﬁ.:l AK(xj,%;) +b—P; <=0
S MK (%), %) + b+ P, >=0Vz £, P, P, >=0

In this formulation the variables b and \; are free Vj. It’s easy to see that eq. (11)
solves the problem for the point x; in £. At the end of the minimizing process, if
we can minimize all the penalties P; to cero, the hyperplane separating x; from
the rest has been found, and we can say that x; is an extreme point of L.

4 Conclusions and Final Remarks

In this paper we have shown a procedure to compute the set of extreme points
defining the Convex Hull of a data set in feature space. The difference with pre-
vious convex hull computation algorithms used in the SVM arena [3, 12] is that
our aproach doesn’t need explicit knowledge of dimensionality or explicitly map-
ping the data points in feature space. A first application area for our method is
incremental and parallel training speedup, where work reported in [3, 4] could be
extended to feature space very easily, although some extensions would need to be
worked out to include non-separable data. A second possible application would
be reduction SVM run time complexity [5-7], since, for example, some misclas-
sified support vectors could in principle be rewritten as convex combination of
extreme points of the data that are already support vectors. Another interesting
property of the method is its dimensionality independence as a general geometric
Convex Hull extreme points algorithm, when compared with other algorithms
like Quickhull [13], and divide and conquer methods.

One important drawback to be dealt with in this topic is that the complex-
ity of the convex hull and the number of extreme points have an exponential
dependence on the dimensionality of the feature space. We have used data in 2
and 3 dimensions to test the algorith, but the adaptation of this aproach to be
used in large scale applications and higher dimension feature spaces is subject
of further work.

Acknowledgments Edgar Osuna also works in the Risk Management Depart-
ment of Banco Mercantil, Caracas, Venezuela. We would like to thank José
Ramirez for his useful comments.

References

1.
2.

3.

10.

11.

12.

13.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1.995.
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273 —
297, 1995.

D. Caragea, A. Silvescu, and V. Honavar. Agents that learn from distributed
dynamic data sources. In Proceedings at The Fourth International Conference on
Autonomous Agents, pages 53—60, Barcelona, Catalonia, Spain, 2000.

N. A. Syed, H. Liu, and K. Kay Sung. Incremental learning with support vector
machines. In J. Debenham, S. Decker, R. Dieng, A. Macintosh, N. Matta, and
U. Reimer, editors, Proceedings of the Sizteenth International Joint Conference on
artificial Intelligence IJCAI-99, Stockholm, Sweden, 1.999.

C. Burges. Simplified support vector decision rules. In Lorenza Saitta, editor, Pro-
ceedings or the Thirteenth International Conference on Machine Learning, pages
71 — 77, Bari, Italia, 1.996.

C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121-167, 1998.

E. Osuna and F. Girosi. Reducing the run-time complexity of support vector
machines. Advances in Kernel Methods, Support Vector Learning, 1998.

K. Bennett and E. Bredensteiner. Duality and geometry in SVM classifiers. In Proc.
17th International Conf. on Machine Learning, pages 57-64. Morgan Kaufmann,
San Francisco, CA, 2000.

K. Bennett and E. Bredensteiner. Geometry in learning. In C. Gorini, E. Hart,
W. Meyer, and T. Phillips, editors, Geometry at Work, Washington, D.C., 1997.
Mathematical Association of America.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast itera-
tive nearest point algorithm for support vector machine classifier design. IJEEE-NN,
11(1):124, 2000.

E. Osuna. Support Vector Machines: Trainig and Applications, PhD Thesis. MIT,
Cambridge, 1.998.

C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. Quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software, 22(4), 1996.

C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algo-
rithm for convex hulls. ACM Transactions on Mathematical Software, 22(4):469—
483, 1996.

Titulo del Articulo:

Convex Hull in Feature Space for Support Vector Machines.

Autores:

Edgar Osuna

Direccién: Universidad Simén Bolivar, Edificio de Mateméticas y Sistemas, 2do piso,
Departamento de Computacién y Tecnologia de la Informacién, Sartenejas, Baruta,
Edo Miranda, Aptdo 89000, Caracas 1080-A, Venezuela.

TIf. +58-212-9063231

eosuna@bancomercantil.com

Osberth De Castro Direccién: Universidad Simén Bolivar, Edificio de Fisica y Electrénica
I, 3er piso, Departamento de Electrénica y Circuitos, Sartenejas, Baruta, Edo Miranda,
Aptdo 89000, Caracas 1080-A, Venezuela.

TIf. +58-212-9063630

odcastro@usb.ve

Resumen:

Some important geometric properties of Support Vector Machines (SVM) have been
studied in the last few years, allowing researchers to develop several algorithmic aproaches
to the SVM formulation for binary pattern recognition. One important property is the
relationship between support vectors and the Convex Hulls of the subsets containing
the classes, in the separable case. We propose an algorithm for finding the extreme
points of the Convex Hull of the data points in feature space. The key of the method
is the construction of the Convex Hull in feature space using an incremental procedure
that works using kernel functions and with large datasets. We show some experimental
results.

Palabras claves:

clustering, optimization, artificial neural models, statistical & probabilistical data minig,
classification.

Tépicos:

Aprendizaje Automdtico, Descubrimiento de Conocimiento y Mineria de Datos.

Seccién a Aplicar:

Paper Track

