
JEO: Java Evolving Objects

M.G. Arenas1, Brad Dolin1;2, P.A. Castillo1, I. Fdez. de Viana3

, J.J. Merelo1, and G. Romero1

1 Dpto de Arquitectura y Tecnolog�ia de los Computadores

Universidad de Granada

CP 18071 { Granada (Spain)

e-mail: fmaribel,pedro,gustavo,jmerelog@geneura.ugr.es
2 Computer Science Department

Stanford University

Stanford, CA 94305 (USA)

e-mail: dolin@cs.stanford.edu
3 Dpto de Ciencias de la Computaci�on

Universidad de Granada

CP 18071 { Granada (Spain)

e-mail: ijfviana@ugr.es

Abstract. In this paper we introduce an Evolutionary Computation

(EC) software system which addresses many of the current needs of

the EC research and development community. Java Evolving Objects

library (JEO) provides a exible and powerful framework for develop-

ing EC experiments. The package makes extensive use of the object-

oriented paradigm, so that new experiments can be easily implemented

by reusing or extending various ready-made EC paradigms: Genetic Al-

gorithms (GA), Genetic Programming (GP), and others. Furthermore,

JEO is fully integrated into a distributed computing package and coded

in platform-independent Java, enabling distributed use of computing re-

sources, even in heteregenous networks.

After discussing previous work in the area of EC object oriented software

design, we present JEO design, architecture, and implementation. We

also present two sample EC problems - the Travelling Salesperson Prob-

lem (solved using a linear chromosome representation), and the Symbolic

Regression Problem (represented in GP). Despite their di�erent genomic

representations, the problems share a good amount of code - demonstrat-

ing JEO's lack of a need for many problem-speci�c data structures. Fur-

thermore, JEO is able to solve these problems seamlessly in a distributed

computing environment.

1 Introduction

Evolutionary Computation (EC) is currently used for an incredibly diverse range

of applications, from SQL sentences improvement [19] to routing using multi-

agent systems [6]. As such, the research community needs more powerful and

exible tools every day. JEO (Java Evolving Objects) provides a exible and

powerful framework for developing EC experiments. With JEO, the researcher



can specify distinct types of EC experiments (Genetic Algorithms, Genetic Pro-

gramming, Evolutionary Strategies, etc.) without having to learn a di�erent tool

for each paradigm. Furthermore, meticulous use of the object-oriented paradigm

makes the package particularly amenable to extensibility and code re-use. Thus,

di�erent evolutionary paradigms can be easily compared with little programming

and a reduced learning curve.

Besides this, JEO addresses the problem of the increased computational re-

sources currently demanded from EC. Experiments and applications need, in

many cases, not merely a single computer but the computational power of an

entire network of computers. Since these networks are almost always hetero-

geneous, portability is an additional problem. DREAM (Distributed Resources

Evolutionary AlgorithmMachine) [22] is a European research project designed to

provide the research community with a Peer-to-Peer (P2P) system for EC prob-

lems. DREAM consists of a code distribution system (the "distributed resource

machine" [11][10]) and an evolutionary computation system (JEO), all written

in platform-independent Java code. The fully-integrated package, as such, solves

the distrubuted computation and portability requirements.

The paper is organised as follows. Section 2 reviews recent work in evolution-

ary computation frameworks. JEO design principles are explained in Section 3,

while architecture and implementation are presented in Section 4. In Section 5

several commonly used problems are used to allow new JEO users to under-

stand the philosophy and structure of the system. Finally, Section 6 presents

some conclusions and ideas for future work. ideas for future work.

2 State of Art

JEO borrows from and improves upon many of the existing EC tools. Its main

source of inspiration is the Evolving Objects tool (EO) [21][20][12][3]. EO is a

C++ class library designed to evolve any complex structure. It is exible enough

to allow implementation of several problem types. However, EO is implemented

in C++, and employs some rather arcane programming techniques - making for

a steep learning curve - whereas JEO is implemented in pure Object-Oriented

Paradigm (OOP) Java. In the latest versions, EO presents distributed computa-

tion features [3], but using these features in a heterogeneous computer network

may be hindered by issues with code portability. JEO's Java implementation,

on the other hand, is platform-independent.

GAlib [8] is another C++ Evolutionary Computation library. It uses Paral-

lel Virtual Machine (PVM) for task distribution and is extensible and exible

(although less than EO - some features like the number and functionality of ge-

netic operators are hardwired). Like EO, it presents portability problems. Also,

GAlib is designed mainly for Genetic Algorithms experiments. There are other

C++ Evolutionary Computation libraries like EvolC [25], although none are as

complete and mature as EO or GAlib.

Besides projects in C++, there are also Java Evolutionary Computation tools

such as JDEAL [7], ECJ [18], JRGP [2], DGP [4][5], GPSYS [23], MAFRA [14]



and GJGP [1]. However, only JDEAL and ECJ are comparable to JEO. The

rest are designed only for the Genetic Programming paradigm, except MAFRA

which is a specialized tool for implementing hybrid evolutionary algorithms (GAs

and local search). So far, MAFRA only implements bitstrings.

JDEAL is a Java objects library for developing Evolutionary Computation

experiments. It lets the user distribute some task through a heterogeneous com-

puter network. It provides a robust statistics package, and makes extensive use of

OOP. However, JDEAL communications is based on a master-slave schema that

could be a problem if the user needs a scalable system. JEO, on the other hand,

bases its communication schema in DRM [10][11]. DRM is a DREAM project

module that provides a P2P system for experiment execution. The P2P system

solves the scalability problem by using a graph structure where each node is ef-

fectively equal to the others: every node can send and receive the same messages,

and the node structure is completely user-determined. Another important im-

provement is that JEO is designed for any Evolutionary Computation paradigm,

not only for Evolution Strategies and Genetic programming, as is JDEAL.

ECJ [18] is an evolutionary computation framework developed in Java. The

package is extremely feature-rich and has an open architecture, as does JEO.

However, the island migration architecture su�ers from the aw that it is not

completely P2P. Client islands rely on a server to continue operation; as the

documentation states, "... if the server goes down, the clients do not continue

operation; they will shut themselves down. This means that in general you can

shut down an entire island model network just by killing the server process."

The JEO migration model is completely P2P, meaning that if any machine goes

down, the "hole" in the network does not a�ect the whole. There are additional

restrictions placed on the islands in ECJ: they must have the same kind of

subpopulations and species; each subpopulation must send the same number of

migrants as any other subpopulation; and, migrants from a subpopulation in an

island must only migrate to the same subpopulation in other islands. JEO places

none of the above restrictions on subpopulation migration: the user can specify

independent Immigrator and Emigrator objects which manage these tasks in any

conceivable way.

3 DESIGN

Any useful tool is based on design principles which provide homogeneity, simplic-

ity and power to the framework. JEO design is based on the following principles:

1. JEO is object-oriented. This programming paradigm enables programmers

to create modules that do not need to be changed when a new type of object

is added. This lets developers design and implement tools using pre-existing

pieces.

2. JEO is platform independent. JEO has been developed to build EC ex-

periments that can be executed in a distributed and heterogeneous virtual

machine. JEO task distribution is based on the Island Model [9][17][26]. As



such, JEO experiments use a set of distributed Islands, exchanging informa-

tion about partial or �nal problem solutions.

3. JEO allows diverse types of evolvable objects. Any evolvable object must

complete a set of rules for mutation, crossover, etc. Interestingly, not only

individuals can be programmed in this way: An operator, an evaluator, or

any other object could implement these rules and therefore be evolved.

4. JEO presents a seamless view of the network as a computational resources

pool. It builds a layer over the already implemented DRM [19] layer, so that

the EC user must only deal with EC concepts, such as islands, operators, etc.,

as opposed to distributed computing concepts like serialization and remote

method invocation.

4 Architecture and Implementation

JEO is programmed in Java. This programming language was selected because

it provides platform independent software and is powerful enough for task dis-

tribution and data collection. The Java compiler used is jdk 1.3.1.

Regarding JEO architecture, extensive and meticulous use is made of the

object-oriented paradigm (OOP) and design patterns. This allows for easy code

re-use and extensibility. As demonstrated in the next section, even experiments

which implement di�erent EC paradigms make use of the same core classes.

JEO's OOP implementation allows the user, for example, to record any class

variable, anywhere in the code, at any evolutionary interval (each generation,

etc.). All one needs to do is initalize a ValueExtractor object and install it in

the Recorder object. The user can even install the ValueExtractor object into

an Analyser object �rst, which in turn gets installed into the Recorder, so that

maximum values, minimum values, means - indeed, any measurable attribute

of the value - can be recorded and outputted into a Comma Seperated Value

(CSV) �le.

Objects are grouped in Java packages, each of which groups some logically

related classes. The most important include:

{ dream.evolution.genomes: genomes to support the various EC paradigms.

{ dream.evolution.initers: objects responsible for �rst-generation initial-

ization.

{ dream.evolution.operators: vast selection of evolutionary operators to

perform mutation, crossover, selection, and other operations on the popula-

tion.

{ dream.evolution.darwiners: the evolutionary engine - objects which as-

sess the �tness of each individual, and manage the size, form, and composi-

tion of each population.

{ dream.evolution.checkpointing: objects which record and output statis-

tical information during the run, and conditionally make use of this infor-

mation to control or end the run.



{ dream.evolution.migration: migration and immigration controllers (note

that actual network communications code is outside of the dream.evolution

JEO package, in other dream.* packages)

Each logical concept has its own Java interface. Using Java interfaces makes

JEO extensible by providing the user with three ways to use one object: the user

may directly utilize some pre-existing JEO interface implementation, extend or

modify an existing JEO implementation by sub-classing, or implement the object

interface with a new class. Since in Java multiple inheritance is only possible via

the use of interfaces, JEO permits, for example, a single object to serve as both

an operator and an evolvable individual.

JEO includes some abstract concepts, each of which is represented by an

interface. The principal logical concepts include:

1. InfoHabitant: In traditional Evolutionary Computation, an individual rep-

resents only a problem solution or part of the problem solution. However,

JEO considers individuals as live inhabitants of a virtual world, using "Info-

Habitant" as a name for this concept. The main InfoHabitant function is to

provide a way to solve a problem (with the genome encoding the solution).

But JEO extends this narrow, passive de�nition to allow for the possibility

of "active" InfoHabitants. As such, an InfoHabitant also lives in a virtual

world and has the ability to make decisions, and to think about any subject.

An InfoHabitant may include a brain, which may be as complicated as an

Arti�cial Neural Network or as simple as a set of decision rules. Of course,

in traditional EC situations, the user need not concern himself with these

concepts, but this view is more general and leaves room for the development

of new algorithms.
2. Island: Each one of the independent processes that is executed to solve an

Evolutionary Computation problem is called an Island. An Island is asso-

ciated with only one CPU, but a CPU may have more than one Island. A

problem is solved using a set of Islands that evolve a set of Environments.

Each Island can run the same EC algorithm or a set of di�erent ones. This

corresponds also to the classical "deme" concept.
3. Environment: An Environment groups some InfoHabitants within the Island

population. Each InfoHabitant group has some common features and can be

modi�ed with the same operators. If the problem solution can be represented

using one class of InfoHabitants, the user usually needs only one Environment

in the Island. If the problem solution needs more than one InfoHabitant to

be represented, this problem is a coevolution problem and the user usually

needs more than one Environment per Island.
4. Breeder: The Breeder's function is to apply variation operators to an Envi-

ronment of InfoHabitants to produce an Environment o�spring population; a

Breeder is applied each generation and an Environment usually uses a single

Breeder.
5. Migrator: Migrator carries out InfoHabitant movements between any two

Islands that are evolving for the same experiment. Movements allow distri-

bution of possible solutions throughout the Island network.



5 Experiments

We provide two experiments, taken from di�erent paradigms within EC, to

demonstrate the exibility of the system.

5.1 Simple TSP

Consider a traveling salesperson who starts from his home city, visits each of a

set of n cities exactly once, and then returns home. The salesperson wants to

travel this circuit in the shortest possible distance. The Traveling Salesperson

Problem [16][24] consists of �nding a permutation of the n cities, called a tour,

which minimizes the total tour distance. The version we implement here is sym-

metric in that the distance from city i to j is the same as that from city j to i.

This experiment uses a linear integer chromosome to represent the tour with a

specialized local search optimization.

Fig. 1. Results of a typical node for the Travelling Salesperson Problem experiment.

Best �tness of 7013 is achieved in generation 5.

Fitness is a double which measures the total tour distance. Selection is

standard Roulette Wheel Selection. Two standard operators manipulate the

genomes: OX-Order-Crossover [15] (with 0:80 probability), and ExchangeMu-

tator (with 0:10 probability), which simply exchanges two genes in the city's

tour. The remaining 10 percent of individuals are copied without modi�cation.

There is also a local search procedure, particular to the TSP problem, applied

to each individual in the population (a type of "informed mutation") [8].

Each Island contains a single population of 500 individuals, and each run is

terminated either when a solution is found or when we reach the maximum num-



ber of generations, 100. We use 10 such Islands, arranged in the simple "token-

ring" structure. Each island sends its best individual, at the end of each gener-

ation, to the next Island in the ring. We use the city data �le ulysses22.tsp (avail-

able from http://www.iwr.uni?heidelberg.de/groups/comopt/software/TSPLIB95

/tsp). Results for a typical Island are shown in �gure 1.

5.2 Symbolic Regression

We implement a simple symbolic regression experiment as well, this time using

Genetic Programming functionality. The goal of symbolic regression (e.g., Koza

[13]), is to �nd a tree-based function (i.e., a Lisp "S-expression") which very

nearly approximates a given set of points. Here, we attempt to approximate the

function:

Y = x

4 + x

3 + x

2 + x (1)

Each expression can be constructed from the arithmetic operators +, �, �,

ProtectedModulus, ProtectedDivision, Sin, Cos, ProtectedExponent, and

ProtectedRLog [13]. We also include a terminal which stands for the indepen-

dent variable, x.

Fitness is calculated as the total absolute error of the evolved function, as

measured at 20 evenly spaced test points in the domain [�1; 1].

We use Kozas ramped half-and-half method for initial tree generation, with

an initial maximum tree depth of 6. The maximum tree depth after operator

application is 17; if the resultant tree is larger, we attempt the operator again

with a di�erent set of individuals. Operators include: tree crossover with 0:90

probability (with internal node selection probability of 0:90 and leaf node se-

lection probability of 0:10), and reproduction (copy without modi�cation) with

0:10 probability. Tournament selection is used, with a tournament size of 3.

Each Island contains a population of size 500, and runs are terminated either

when a solution is found, or 100 generations have been evolved. There are 10

such Islands, with the same structure as used in the TSP experiment, above.

Results for a typical Island are shown in �gure 2.

5.3 Experiment Speci�cation in JEO

It is noteworthy that even while these experiments have di�erent solution objec-

tives, di�erent �tness measures, and indeed even use genome representations and

operators from di�erent EC paradigms, the amount of code sharing is extensive.

Indeed, JEO is designed such that the only code that needs to be written is that

which is particular to the given experiment.

As such, the "evolutionary engine" - population storage, selection and re-

placement mechanisms, statistics gathering and reporting, inter-island migration

- is utilized "as is" by both experiments. Each experiment speci�cation class

need only include EC parameters, and simple initialization code of ready-made



Fig. 2. Results of a typical node for the Symbolic Regression experiment. Average �t-

ness in generation 0, o� the graph, is 3:09E13. Best �tness of 0 is achieved at generation

10.

JEO genomes and operators. The �tness function, and of course any experiment-

speci�c operators, are the only logical concepts that must be implemented by the

user. Code can be downloaded from http://sourceforge.net/projects/dr-ea-m.

6 Conclusions and Future Work

We have described the design principles, architecture and implementation of Java

Evolving Objects - an extensible, platform-independent Evolutionary Computa-

tion software package capable of performing distributed computation. As proof

of concept, we have presented two experiments from di�erent EC paradigms -

one using a linear chromosome and one from GP - which bene�t from substantial

code sharing.

JEO is, of course, still a work in progress. Future goals include the imple-

mentation of other EC paradigms (EA, GEP, etc.) as well as experiments with

the "active" sort of InfoHabitant discussed above.

Acknowledgements

This work is supported by Distributed Resources Evolutionary Algorithm Ma-

chine (DREAM IST-1999-12679) project. This work is funded as part of the

European commission Information Society Technologies Programme (Future and

Emerging Technologies). The authors have sole responsibility for this work: it

does not represent the opinion of the European Community, and the European

Community is not responsible for any use that may be made of the data appear-

ing herein. Brad Dolin is supported by a Fulbright Grant. Thanks to the PUFO

(Prediccin Universal Financiera On-Line CICYT TIC 1999-0550) and INTAS
(INTAS-9730950) projects for their collaboration.



References

[1] Robert Baruch. Groovy java genetic programming.

https://sourceforge.net/projects/jgprog.

[2] Pietro Berkes and Samuele Pedroni. Jrgp. Available from

http://jrgp.sourceforge.net.

[3] J. G. Castellano, P.A Castillo, J. J. Merelo, and G. Romero. Paralelizacion de

evolving library usando mpi. In XII Jornadas de Paralelismo. ISBN: 84-9705-

043-6, Valencia, pages 265{270, September 2001.

[4] Fuey Sian Chong. A java based distributed approach to genetic programming on

the internet. In Procedings of Evolutionary Computation and Parallel Processing,

I:163{166, July 1999.

[5] Fuey Sian Chong. A java based distributed approach to genetic programming on

the internet. In Proceedings of Genetic And Evolutionary Computation Confer-

ence, ISBN 1-55860-611-4, II, July 1999.

[6] Postgres Community. Postgres evolution. available from. Available from

http://postgresql.lerner.co.il/devol-corner/docs/postgres/geqo-pg-intro.html.

[7] Joao Costa, Nuno Lopes, and Pedro Silva. Jdeal, the java distributed evolutionary

algorithms library. Available from http://laseeb.ist.utl.pt/sw/jdeal.

[8] B. Freisleben and P. Merz. A genetic local search algorithm for solving symmetric

and asymmetric traveling salesman problem. In IEEE Press, editor, In Proceedings

of the IEEE international Conference on Evolutionary computation (ICEC'96),

pages 616{621, 1996.

[9] D. E. Golberg and E. Cant-Paz. Modeling idealized bounding cases of parallel ge-

netic algorithms. In Morgan Kaufmann, editor, Proceedings of the Second Annual

Conference of Genetic Programming, pages 353{361, 1997.

[10] Mark Jelasity, Mike Preub, and Ben Paechter. A scalable and robust framework

for distributed application. 2002 Congress on Evolutionary Computation, May

2002.

[11] Mark Jelasity, Mike Preub, Maarten van Steen, and Ben Paechter. Maintaining

connectivity in a scalable and robust distributed environment. In 2nd IEEE

International Symposium on Cluster Computing and the Grid (CCGrid2002), May

2002.

[12] M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer. Evolving objects: a

general purpose evolutionary computation library. In Procedings Evolution Arti-

�cielle 2001, 2001.

[13] John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, 1992.

[14] Natalio Krasnogor and Jim Smith. MAFRA: A java memetic algorithms frame-

work. In William Hart, Natalio Krasnogor, and Jim Smith, editors, 2000 Genetic

And Evolutionary Computation Conference, First International Workshop On

Memetic Algorithms - Workshop Proceedings, pages 125{130, Las Vegas, Nevada,

USA, Agoust 2000. citeseer.nj.nec.com/krasnogor00mafra.html.

[15] Davis L. Applying adaptive algorithms to epistatic domains. In In Proceedings of

the International Joint Conference on Arti�cal Intelligence, pages 162{164, 1985.

[16] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors.

The Traveling Salesman Problem. John Wiley & Sons Ltd., 1985.

[17] M. R. Leuze, C. B. Pettey, and J.J. Grefenstette. A parallel genetic algorithms.

In J. J. Grafenstette, editor, Proceedings of the second International Conference

on Genetic Algorithms, pages 155{162, 1987.



[18] Sean Luke. A java-based evolutionary computation and genetic programming

research system. Available from http://www.cs.umd.edu/projects/plus/ec/ecj.

[19] Sinclair M.C. Minimum cost wavelength-path routing and wavelength allocation

using a genetic-algorithm/heuristc hybrid approach. IEEE Proceedings Commu-

nications, 146(1):1{7, Febreary 1999.

[20] J. J. Merelo, M. G. Arenas, J. Carpio, P.A. Castillo, V. M. Rivas, G. Romero, and

M. Schoenauer. Evolving objects. In Proceedings JCIS 2000 (Joint Conference

on Information Sciences), volume I, pages 1083{1086, 2000.

[21] J. J. Merelo, Maarten Keijzer, and Marc Schoenauer. Eo evolutionary computa-

tion framework. Available from http://eodev.sourceforge.net.

[22] Ben Paechter, Thomas Baech, Marc Schoenauer, Michele Sebag, A. E. Eiben, J. J.

Merelo, and T. C. Fogarty. Dream distributed resource evolutionary algorithm

machine. In Proceedings of the Congress on Evolutionary Computation 2000,

volume 2, pages 951{958, 2000. Available from http://dr-ea-m.sourceforge.net.

[23] Adil Qureshi. A java genetic programming system. Available from

http://www.cs.ucl.ac.uk/sta�/A.Qureshi/gpsys.html.

[24] G. Reinelt. The traveling salesman: Computational solutions for TSP applications.

Springer Verlag, 1994. LNCS 840.

[25] Marc Schoenauer. Evolc. Available from

http://www.eark.polytechnique.fr/EvolC.html.

[26] R. Tanese. Parallel genetic algorithms for hypercube. In J. J. Grafenstette, editor,

Proceedings of the second International Conference on Genetic Algorithms, pages

177{184, 1987.


