
Extracting Knowledge from Databases with Genetic
Programming: Iris Flower Classification Problem

Daniel Rivero1, Juan R. Rabuñal2, Julián Dorado2, Alejandro Pazos2 and Nieves
Pedreira2

Univ. da Coruña, Fac. Informática, Campus Elviña, 15192 A Coruña, Spain
1 infdrc00@ucv.udc.es 2 {juanra, julian, ciapazos, nieves}@udc.es

Abstract. In the world of databases the extraction of knowledge has been a
very useful tool for many different purposes and tried with many different
techniques. In this paper we use Genetic Programming (GP) to solve a
classification problem from a database and we will show how we can adapt this
tool in two different ways: to improve its performance and to make possible the
detection of errors. Results show that the technique developed in this paper
opens a new area for research in the field extracting knowledge from more
complicated structures, like neural networks.

1 Introduction

Genetic Programming (GP) [1] is an evolutionary method that creates computer
programs that represent approximate or exact solutions to a problem. This technique
allows the finding of programs with the shape of a tree, and in its most common
application those programs will be mathematical expressions combining mathematical
operators, input variables, constants, decision rules, relational operators, etc.

All of these possible operators must be specified before starting the search, and so
with them GP must be able to build trees with the objective of finding the desired
expression which models the relation between the input variables and the desired
output. This set of operators are divided into two groups: terminal set, with the ones
which can not accept parameters, like variables or constants; and function set, with
the ones which need parameters, like add or subtract operators. Once the terminal and
non-terminal operators are specified, it is possible to establish types: each node will
have a type, and the construction of child expressions needs to follow the rules of the
nodal type [2].

GP makes a process of automatic program generation by means of a process based
on Darwin’s evolution theory [3], in which, after subsequent generations, new trees
(individuals) are produced from old ones by means of crossover, copy and mutation
[4] [5], based on natural selection: the best trees will have more chances of being
chosen to become part of the next generation. Thus, a stochastic process is established
in which, after successive generations, obtains a well adapted tree.

As the programs we are obtaining with GP have the shape of trees, GP has the
ability of adapting to many different kinds of problems. The problem proposed in this

paper is extracting knowledge from databases, and we will show how we can solve it
with GP in two different ways in a classification problem: by extracting a rule (with
the shape of an IF-THEN-ELSE rule) that makes classifications, and extracting
different rules, each one for each classification class.

In the field of knowledge discovery from databases one of the most successful
applications of GP is in the development of fuzzy rules [6] [7], mixing its ability to
develop rules, and using the technique of Automatically Defined Functions (ADF),
described in [8], for obtaining fuzzy rules.

In a recent work done by Wong and Leung GP is applied as a knowledge
extraction technique from databases, and they present LOGENPRO (Logic Grammar
Based Genetic Algorithm) [9]. They make a combination of GP and representation of
knowledge in first order logic. This first approximation shows the advantages of GP
as a KDD (Knowledge Discovery in Databases) extraction technique.

GP was also used as a rule extraction technique in combination with decision trees,
where the functions in the nodes of the trees use one or more variables [10], but this
combination makes the algorithm design very complicated. More recently,
Engelbrecht, Rouwhorst and Schoeman [11] apply GP and decision trees for
extracting knowledge from databases designing an algorithm called BGP (Building-
Block Approach to Genetic Programming). In this algorithm GP is combined with
decision trees, but, in this case, centered in the concept of building block, which
represents a condition or a node of the tree. A building block has three parts: an
attribute, a relational operator and a threshold. Rules are obtained by combining
different values of the parts of the building blocks in the shape of decision trees.

2 Description of the problem

The iris flower data [12] were originally published by Fisher [13] for examples in
discriminant analysis and cluster analysis. Four parameters, including sepal length,
sepal width, petal length and petal width, were measured in millimeters on fifty iris
specimens from each of three species, Iris setosa, Iris versicolor, and Iris virginica.
So, given the four parameters, one should be able to determine which of the three
classes a specimen is categorized to. There are 150 data points listed in the database.

One of the reasons for applying this problem is due to the physical situation of the
classes in the four-dimension space. On Fig 1. can be seen the space distribution for
variables X1 and X2 (petal length and petal width). As shown on [14], with these two
variables we can get a higher discrimination for the three classes, a fitness of a 98% of
success using only these two variables. So, they are an important reference point for
comparing graphically the results.

In this paper we will show how we can use GP to solve the iris flower problem. We
will see two different points of view. In the first, we will use GP in order to obtain a
rule classifier system (one-tree classification), and in the second we will try to find a
boolean expression for each of the three species to determine if the data belongs to
that class (three-tree classification). We will see how GP seems to be a suitable
technique not just for classify problems, but in general also for extracting knowledge
from databases and data mining.

Fig. 1. Distribution of the three classes.

3 One-tree classification

In this part we will configure and run GP in order to obtain a single tree that makes a
classification of the data points. Here we will show how we can improve the
performance of GP by pre-processing the data and this way obtain better results.

3.1 Classification with no pre-processing

Here we will solve the problem with the data taken as is: with no modification at all.

3.1.1 Configuration

As explained in section 1, to make possible the run of GP, we need to specify the
terminal and function sets.

As we want to obtain a flower classification, we will need to make trees with a
concrete structure: we will use the typing properties of GP to do this. We will ask GP
to make trees with a special type: FLOWER_TYPE.

To have the trees as classifier rules, we just have three terminals and one function
returning that type. These terminals are Setosa, Virginica and Versicolor, one for each
type of flower. The function is IF-THEN-ELSE, which accepts as first input a boolean
expression and as second and third inputs expressions with FLOWER_TYPE type,
whether they are one of the three terminals or other IF-THEN-ELSE expressions.

So, the resulting trees will have the shape of a decision rule, for example:

 IF <boolean expression>
 THEN
 IF <boolean expression>

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Setosa

Versicolor

Virginica

Pe
ta

l w
id

th
 (

m
m

)

Petal length (mm)

 THEN Virginica
 ELSE Versicolor
 ELSE
 IF <boolean expression>
 THEN
 ELSE Versicolor

To build the boolean expressions, we will use as terminals the variables X1, X2, X3

and X4, which stand for petal width, petal length, sepal width and sepal length
respectively (all four variables real numbers); and the random constants, extracted
from the real interval between 1 and 80. We chose this interval because it contains the
maximum and minimum values those four variables can have.

We also have the traditional arithmetic operators +, -, * and %, standing % for the
division protected operator, which returns a value of 1 if the denominator is equal to
zero.

For building boolean expressions, relational and boolean operands are required;
relational for establishing relations between the real expressions (containing those
four variables and constants) and boolean operators for joining other boolean
expressions if necessary.

The complete set of terminals and functions, with their types and their children
types, in case of being functions, can be seen on table 1.

 Name Returning type Parameter type
X1, X2, X3, X4 REAL

[1, 80] REAL
Terminal

set
Setosa, Verginica,

Versicolor
FLOWER_TYPE

IF-THEN-ELSE FLOWER_TYPE BOOLEAN, FLOWER_TYPE,
FLOWER_TYPE

+, -, *, % REAL REAL, REAL
<, >,>=,<= BOOLEAN REAL, REAL
AND, OR BOOLEAN BOOLEAN, BOOLEAN

Function
set

NOT BOOLEAN BOOLEAN

Table 1. Terminal and function sets used for the one-tree classification.

3.1.2 Results

For solving this problem different combinations of parameters were used, and the set
with which we obtained better results can be seen on table 2.

Selection algorithm Tournament
Crossover rate 95%
Mutation rate 4%

Population size 500 individuals

Parsimony level 0.0001

Table 2. Best parameters for solving with GP.

The result is a classification rule with a fitness of 99.33% success: it fails one case
out of the 150 possible. The rule obtained, after 23 hours of computing in an AMD
K7 at 1Ghz and 128 MB of RAM memory, is the following:

IF (X2 < 25.370)
THEN Setosa
ELSE
IF ((((X2-40.959)%X2)<(X2-(X3-(X1%(X1-(X4-23.969)))) AND

((X2%(X2-42.760)<(X2-(23.969%(X2-(X4-(X2-34.507))))))
AND (((X1-10.856)%(X2-40.959))<(X2-(X3-((X2-42.760)%
(X1-21.777))))))) AND (((X2-X3 < (X4-(X2%(X2-(X4-(X2-
(X4-(X2-(X3-((X2-40.959)%(X1-21.777))))))))))) AND
(((X2 % (X2-(X4-(X2-(X3-(X1 % (X2-40.959))))))) % (X2-
40.959))<X2-(X3-(X1%(X1-21.777))))) AND ((23.969%(X1
-10.856))<((X2-(23.969%(X2-(X4-(X2-(X3-((X2-40.959) %
(X2-X3-21.777))))))))-(X2%(X2-(X4-(X2-40.959)))))))))
AND ((X3-((X2-40.959)%(X1-21.777)))>21.777))

THEN Virginica
ELSE Versicolor

3.2 Classification with pre-processing

Now we will see how we can improve the performance of GP with a pre-processing
of the data. What we will do is to normalize the data to make all four parameters be in
the interval [0,1]. We do this to make these four variables be in the same rank and so
for GP it will be easier to make and combine mathematical expression including
constants because these will be in similar ranks, and so we won´t be combining
expressions with out-of-rank values.

3.2.1 Configuration

As we still want to obtain one tree with the shape of an IF-THEN-ELSE classifier
rule, we will use a terminal and function set similar to the ones explained in section
3.1.1 and shown in table 1. The only exception is the use of random constants: now
they will not be within the rank [1,80], but in the rank [0,1] because as we have the
data normalized in that rank, we need the constants to be in the same rank too.

3.2.2 Results

The best set of parameters found for solving this problem is the same as described in
section 3.1.2, shown in table 2. With these parameters, the best expression found, with

a fitness of 100%, computed with the same machine and after 7 hours, is the
following:

IF (X2 < 0.373)
THEN Setosa
ELSE

IF (((0.483>((X4-0.799)*(0.483%(X1-X2)))) AND ((X3>
0.701) OR (X4>(X1-(0.182+X3)*(0.483%(X1-X2)))))) OR
(((-0.132)*((X1*X2)%((0.821*(0.721-(X1-(0.182+X3))))
-(0.182+X3))))>(0.483%(X1-0.701))))

THEN
IF ((((X4>(-0.132*((X1*X1)%(0.721-(0.182+X3)))) AND

(X4>((-0.132) * (0.483%(0.721-(((X1-((0.182+X3) *
0.877))*(0.483%(X1-X2)))*(0.483%(0.182+X3))))))))
AND (0.821>((-0.132)*(0.483%(X1-0.701))))) AND
(X4>(-0.132*(X4 % (0.721-(((X1-(0.182+X3))*(0.483%
(X1-X2)))*(0.483%(0.182+X3)))))))) OR ((X3>(X1-(-
0.132))) OR ((X2>0.721) AND (X4>((-0.132)*(0.483%
(X1-((0.182+X3)*0.877))))))))

THEN
IF (((0.721>(X2*X4)) AND (X4>X2)) OR (((X1<0.877)

OR (0.799>X4)) OR (X3>0.799)))
THEN Verginica
ELSE Versicolor

ELSE Versicolor
ELSE Versicolor

Note that the second expression (obtained with pre-processing) has better fitness,

and it has been found in less time, so with a small pre-processing of the data we
improved the performance of GP, in the fitness obtained and in the time taken to
develop the desired expression.

4 Three-tree classification

In this section we will solve the problem in a different point of view. Now we will use
GP not for making a simple classification into one of the three classes, but to extract
three boolean rules to determine whether a particular data point belongs to each specie
of flower.

As we have three decision rules, it will have an additional advantage: if, for the
same data point, none of the rules make an output as true, or if more than one make an
output as true, then we can conclude that this point is now well classified by the
system, i.e., we can detect some errors made by the system.

4.1 Configuration

To obtain these boolean rules, we configure GP for obtaining boolean expressions:
now the resulting type will be BOOLEAN. As boolean elements we will have the IF-
THEN-ELSE classifier rules (accepting three children with BOOLEAN type),
relational operators, needed for establishing relations between variables and constants,
and boolean operators.

We will also need the four variables and random constants, now inside the interval
[0,1], because now we are working directly with normalized values. The complete
terminal and function set is shown on table 3.

 Name Returning type Parameter type
X1, X2, X3, X4 REAL Terminal

set [0, 1] REAL
IF-THEN-ELSE BOOLEAN BOOLEAN, BOOLEAN,

BOOLEAN
+, -, *, % REAL REAL, REAL

<, >,>=,<= BOOLEAN REAL, REAL
AND, OR BOOLEAN BOOLEAN, BOOLEAN

Function
set

NOT BOOLEAN BOOLEAN

Table 3. Terminal and function sets used for the three-tree classification

4.2 Results

The set of parameters which gave better results are the same as described in section
3.1.2, and shown on table 2. With these elements, the results obtained, with the inputs
already normalized, can be seen on table 4. Note that the third expression (used for
Iris Virginica) has a fitness of 99.33% success, that is, it fails on one case out of the
150. This case is classified by the system as both Virginica and Versicolor, which is
an invalid exit and it is detected. So we can consider that the system doesn´t have any
fail and gets a fitness of 100% success.

Table 4. Expressions obtained for classifying into the three different classes.

The comparison with other techniques can be seen on the following table:

Flower type Expression obtained Fitness
Setosa (X1 < 0.3141) 100%

Versicolor (((0.677>X3) OR (0.526<X2<(0.736))) AND
(((0.610<X1<0.721) OR

((0.3360<X1<0.526) OR (0.526<X2< 0.721))) AND
((X3>X1) OR (0.677>X1))))

100%

Virginica (((X1>X2) OR (X2>0.718)) AND ((X2>X4) OR
(((0.739<X2<0.765) OR (X4>0.902)) OR (X1>X3))))

99.33%

Method Type Fitness Reference
Proposed here
ReFuNN
C-MLP2LN
SSV
ANN
Grobian
GA+NN
NEFCLASS
FuNe-I

Rules
Fuzzy
Crisp
Crisp
Weigths
Rough
Weigths
Fuzzy
Fuzzy

100%
95.7%
98.0%
98.0%
98.67%
100.0%
100.0%
96.7%
96.0%

[15]
[14]
[14]
[16]
[17]
[18]
[19]
[20]

Table 5. Comparison between the method proposed here and other different methods.

The distributions obtained from these three rules can be seen on Fig. 2. In this
graph, as in the following, the X axis references petal width (X1) and Y axis
references petal length (X2).

Fig. 2. Distributions obtained for the three classes

We can put these three distributions together in the same graph and compare them
with the training set. This is shown on Fig 3.

Fig. 3. Distributions obtained from the rules and from the training set.

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Setosa

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Versicolor

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Virginica

0

5

10

15

20

25

0 10 20 30 40 50 60 70

Setosa

Versicolor

Virginica

Distribución Original
Setosa
Versicolor
Virginica

In this figure we can see that the rule extraction system tries to join those values
which depend on each classification and tries to isolate them from those values
dependent on other classifications. The intersection areas are those in which the
system makes incorrect outputs indicating that the given output is not correct and an
individual analysis is necessary for those values to determine which class they belong.

5 Conclusions

As shown in the results, GP seems to be a powerful technique for extracting
knowledge from databases. In this paper it has been applied to a well known problem,
the iris flower data, with good results and the additional advantage of having as
results mathematical expressions which relations the parameters.

In the first attempt, the one-tree classifier, we show how we can adapt GP to
produce decision rules with the desired shape, and so how we can obtain high-level
explicit knowledge about the system. In this part we can also see that it is better to do
a pre-processing to the data to improve the performance of GP. This is so because we
put all of the parameters to the same rank and so the system finds easier to work with
all variables and constants in the same rank (i.e., it does not find problems in
combining constants and values with much different values). We can conclude that
with a minimum analysis of the data we can improve the process in both ways: in the
final success and in the time needed to obtain it.

The second attempt, the three-tree classifier, gave additional knowledge. With the
construction of three different boolean expressions, each one for each class, we
obtained an additional knowledge: now we can detect errors made by the system.

GP, then, is shown to be a suitable technique for extracting knowledge from
databases, not only in classification problems: its ability to adapt to many different
environments (the user selects which operator is needed to be included in the sets)
allows the extraction of mathematical relations, decision rules, etc.

6 Future works

As we obtained better results with normalized parameters and different classification
rules, the following step is to try to extract knowledge from artificial neural networks
(ANNs) trained with the iris flower data as training set. As was shown on [16] and
[21], the maximum fitness they can obtain is a success of 98.67%. With the system
proposed here, we must be able to extract the knowledge contained in the ANNs not
only in the training set, but also in new data points, because ANNs have the ability of
generalization and once they are trained they accept as inputs values not present in the
training set and are supposed to give good coherent outputs.

References

1. Koza J.: Genetic Programming. On the Programming of Computers by means of Natural
Selection. The Mit Press, Cambridge Massachusetts (1992)

2. Montana, D.J.: Strongly Typed Genetic Programming. Evolutionary Computation.
3(2):199-200. The MIT Press, Cambridge Massachusetts (1995)

3. Darwin, C.: On the origin of species by means of natural selection or the preservation of
favoured races in the struggle for life. Cambridge University Press. Cambridge, UK (1864).

4. Fuchs, M.: Crossover Versus Mutation: An Empirical and Theoretical Case Study. 3rd
Annual Conference on Genetic Programming. Morgan-Kauffman (1998)

5. Luke, S., Spector, L.: A Revised Comparison of Crossover and Mutation in Genetic
Programming. 3rd Annual Conference on Genetic Programming. Morgan-Kauffman (1998)

6. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press (1996)

7. Bonarini A.: Evolutionary Learning of Fuzzy Rules: Competition and Cooperation. Fuzzy
Modelling: Paradigms and Practice. W. Pedrycz (Ed.), Kluwer Academic Press. Norwell,
MA. (1996)

8. Koza J.: Genetic Programming II: Automatic Discovery of Reusable Programs. The Mit
Press. Cambridge, Massachusetts (1994)

9. Wong, M.L., Leung, K.S.: Data Mining using Grammar Based Genetic Programming and
Applications. Kluwer Academic Publishers (2000.)

10. Bot, M.: Application of Genetic Programming to Induction of Linear Classification Trees.
Final Term Project Report, Vrije Universiteit, Amsterdam (1999)

11. Engelbrecht, A.P., Rouwhorst, S.E., Schoeman, L.: A Building Block Approach to Genetic
Programming for Rule Discovery. Data Mining: A Heuristic Approach. Abbass, R. Sarkar,
C. Newton editors, Idea Group Publishing (2001)

12. SAS Institute: SAS/STAT user's Guide, Release 6.03 Edition. SAS Institute Inc. Cary,
North Carolina, U.S.A. (1988).

13. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of
Eugenic. 179-188. (1936)

14. Duch, W., Adamczak, R., Grabczewski, K.: A new methodology of extraction, optimisation
and application of crisp and fuzzy logical rules. IEEE Transactions on Neural Networks,
vol. 11, nº 2. (2000)

15. Kasabov, N.: Foundations of Neural Networks, Fuzzy Systems and Knowledge
Engineering. MIT Press (1996)

16. Martínez, A., Goddard, J.: Definición de una red neuronal para clasificación por medio de
un programa evolutivo. Mexican Journal of Biomedical Engineering. Vol. 22, pp. 4-11.
(2001)

17. Browne, C., Düntsch, I., Gediga, G.: IRIS revisited: A comparison of discriminant and
enhanced rough set data analysis. Polkowski L. and Skowron A. editors. Rough sets in
Knowledge Discovery, vol. 2, Physica Verlag, Heidelberg, pp. 345-368. (1998)

18. Jagielska, I., Matthews, C., Whitfort, T.: The application of neural networks, fuzzy logic,
genetic algorithms and rough sets to automated knowledge acquisition. 4th Int. Conf. On
Soft Computing, IIZUKA’96. Japón, vol. 2, pp. 565-569 (1996)

19. Nauck, D., Nauck, U., Kruse, R.: Generating Classification Rules with the Neuro-Fuzzy
System NEFCLASS. Proc. of Biennal Conf. of the North American Fuzzy Information
Processing Society (NAFIPS’96). Berkeley. (1996)

20. Halgamuge, S.K., Glesner, M.: Neural Networks in designing fuzzy systems for real world
applications. Fuzzy Sets and Systems. vol. 65, pp. 1-12 (1994)

21. Rabuñal Dopico, J.R.: Entrenamiento de Redes de Neuronas Artificiales mediante
Algoritmos Genéticos. Graduate Thesis, Facultad de Informática, Universidade da Coruña
(1999)

