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Abstract. In the world of databases the extraction of knowledge has been a 
very useful tool for many different purposes and tried with many different 
techniques. In this paper we use Genetic Programming (GP) to solve a 
classification problem from a database and we will show how we can adapt this 
tool in two different ways: to improve its performance and to make possible the 
detection of errors. Results show that the technique developed in this paper 
opens a new area for research in the field extracting knowledge from more 
complicated structures, like neural networks. 

1   Introduction 

Genetic Programming (GP) [1] is an evolutionary method that creates computer 
programs that represent approximate or exact solutions to a problem. This technique 
allows the finding of programs with the shape of a tree, and in its most common 
application those programs will be mathematical expressions combining mathematical 
operators, input variables, constants, decision rules, relational operators, etc. 

All of these possible operators must be specified before starting the search, and so 
with them GP must be able to build trees with the objective of finding the desired 
expression which models the relation between the input variables and the desired 
output. This set of operators are divided into two groups: terminal set, with the ones 
which can not accept parameters, like variables or constants; and function set, with 
the ones which need parameters, like add or subtract operators. Once the terminal and 
non-terminal operators are specified, it is possible to establish types: each node will 
have a type, and the construction of child expressions needs to follow the rules of the 
nodal type [2]. 

GP makes a process of automatic program generation by means of a process based 
on Darwin’s evolution theory [3], in which, after subsequent generations, new trees 
(individuals) are produced from old ones by means of crossover, copy and mutation 
[4] [5], based on natural selection: the best trees will have more chances of being 
chosen to become part of the next generation. Thus, a stochastic process is established 
in which, after successive generations, obtains a well adapted tree. 

As the programs we are obtaining with GP have the shape of trees, GP has the 
ability of adapting to many different kinds of problems. The problem proposed in this 



paper is extracting knowledge from databases, and we will show how we can solve it 
with GP in two different ways in a classification problem: by extracting a rule (with 
the shape of an IF-THEN-ELSE rule) that makes classifications, and extracting 
different rules, each one for each classification class. 

In the field of knowledge discovery from databases one of the most successful 
applications of GP is in the development of fuzzy rules [6] [7], mixing its ability to 
develop rules, and using the technique of Automatically Defined Functions (ADF), 
described in [8], for obtaining fuzzy rules. 

In a recent work done by Wong and Leung GP is applied as a knowledge 
extraction technique from databases, and they present LOGENPRO (Logic Grammar 
Based Genetic Algorithm) [9]. They make a combination of GP and representation of 
knowledge in first order logic. This first approximation shows the advantages of GP 
as a KDD (Knowledge Discovery in Databases) extraction technique. 

GP was also used as a rule extraction technique in combination with decision trees, 
where the functions in the nodes of the trees use one or more variables [10], but this 
combination makes the algorithm design very complicated. More recently, 
Engelbrecht, Rouwhorst and Schoeman [11] apply GP and decision trees for 
extracting knowledge from databases designing an algorithm called BGP (Building-
Block Approach to Genetic Programming). In this algorithm GP is combined with 
decision trees, but, in this case, centered in the concept of building block, which 
represents a condition or a node of the tree. A building block has three parts: an 
attribute, a relational operator and a threshold. Rules are obtained by combining 
different values of the parts of the building blocks in the shape of decision trees. 

2   Description of the problem 

The iris flower data [12] were originally published by Fisher [13] for examples in 
discriminant analysis and cluster analysis. Four parameters, including sepal length, 
sepal width, petal length and petal width, were measured in millimeters on fifty iris 
specimens from each of three species, Iris setosa, Iris versicolor, and Iris virginica. 
So, given the four parameters, one should be able to determine which of the three 
classes a specimen is categorized to. There are 150 data points listed in the database. 

One of the reasons for applying this problem is due to the physical situation of the 
classes in the four-dimension space. On Fig 1. can be seen the space distribution for 
variables X1 and X2 (petal length and petal width). As shown on [14], with these two 
variables we can get a higher discrimination for the three classes, a fitness of a 98% of 
success using only these two variables. So, they are an important reference point for 
comparing graphically the results. 

In this paper we will show how we can use GP to solve the iris flower problem. We 
will see two different points of view. In the first, we will use GP in order to obtain a 
rule classifier system (one-tree classification), and in the second we will try to find a 
boolean expression for each of the three species to determine if the data belongs to 
that class (three-tree classification). We will see how GP seems to be a suitable 
technique not just for classify problems, but in general also for extracting knowledge 
from databases and data mining. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Distribution of the three classes. 

3   One-tree classification 

In this part we will configure and run GP in order to obtain a single tree that makes a 
classification of the data points. Here we will show how we can improve the 
performance of GP by pre-processing the data and this way obtain better results. 

3.1   Classification with no pre-processing 

Here we will solve the problem with the data taken as is: with no modification at all. 

3.1.1   Configuration 
 
As explained in section 1, to make possible the run of GP, we need to specify the 
terminal and function sets. 

As we want to obtain a flower classification, we will need to make trees with a 
concrete structure: we will use the typing properties of GP to do this. We will ask GP 
to make trees with a special type: FLOWER_TYPE. 

To have the trees as classifier rules, we just have three terminals and one function 
returning that type. These terminals are Setosa, Virginica and Versicolor, one for each 
type of flower. The function is IF-THEN-ELSE, which accepts as first input a boolean 
expression and as second and third inputs expressions with FLOWER_TYPE type, 
whether they are one of the three terminals or other IF-THEN-ELSE expressions. 

So, the resulting trees will have the shape of a decision rule, for example: 
 
 IF <boolean expression> 
 THEN 
  IF <boolean expression> 
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  THEN Virginica 
  ELSE Versicolor 
 ELSE 
  IF <boolean expression> 
  THEN 
  ELSE Versicolor 
 
To build the boolean expressions, we will use as terminals the variables X1, X2, X3 

and X4, which stand for petal width, petal length, sepal width and sepal length 
respectively (all four variables real numbers); and the random constants, extracted 
from the real interval between 1 and 80. We chose this interval because it contains the 
maximum and minimum values those four variables can have. 

We also have the traditional arithmetic operators +, -, * and %, standing % for the 
division protected operator, which returns a value of 1 if the denominator is equal to 
zero. 

For building boolean expressions, relational and boolean operands are required; 
relational for establishing relations between the real expressions (containing those 
four variables and constants) and boolean operators for joining other boolean 
expressions if necessary. 

The complete set of terminals and functions, with their types and their children 
types, in case of being functions, can be seen on table 1. 
 

 Name Returning type Parameter type 
X1, X2, X3, X4 REAL 

[1, 80] REAL 
Terminal 

set 
Setosa, Verginica, 

Versicolor 
FLOWER_TYPE 

IF-THEN-ELSE FLOWER_TYPE BOOLEAN, FLOWER_TYPE, 
FLOWER_TYPE 

+, -, *, % REAL REAL, REAL 
<, >,>=,<= BOOLEAN REAL, REAL 
AND, OR BOOLEAN BOOLEAN, BOOLEAN 

Function 
set 

NOT BOOLEAN BOOLEAN 

Table 1. Terminal and function sets used for the one-tree classification. 

3.1.2   Results 
 
For solving this problem different combinations of parameters were used, and the set 
with which we obtained better results can be seen on table 2. 
 

Selection algorithm Tournament 
Crossover rate 95% 
Mutation rate 4% 

Population size 500 individuals 



Parsimony level 0.0001 

Table 2. Best parameters for solving with GP. 

The result is a classification rule with a fitness of 99.33% success: it fails one case 
out of the 150 possible. The rule obtained, after 23 hours of computing in an AMD  
K7 at 1Ghz and 128 MB of RAM memory, is the following: 

 
IF (X2 < 25.370)  
THEN Setosa 
ELSE 
IF ((((X2-40.959)%X2)<(X2-(X3-(X1%(X1-(X4-23.969)))) AND 

((X2%(X2-42.760)<(X2-(23.969%(X2-(X4-(X2-34.507)))))) 
AND (((X1-10.856)%(X2-40.959))<(X2-(X3-((X2-42.760)% 
(X1-21.777))))))) AND (((X2-X3 < (X4-(X2%(X2-(X4-(X2-
(X4-(X2-(X3-((X2-40.959)%(X1-21.777))))))))))) AND 
(((X2 % (X2-(X4-(X2-(X3-(X1 % (X2-40.959))))))) % (X2-
40.959))<X2-(X3-(X1%(X1-21.777))))) AND ((23.969%(X1 
-10.856))<((X2-(23.969%(X2-(X4-(X2-(X3-((X2-40.959) % 
(X2-X3-21.777))))))))-(X2%(X2-(X4-(X2-40.959))))))))) 
AND ((X3-((X2-40.959)%(X1-21.777)))>21.777)) 

THEN Virginica 
ELSE Versicolor 

3.2   Classification with pre-processing 

Now we will see how we can improve the performance of GP with a pre-processing 
of the data. What we will do is to normalize the data to make all four parameters be in 
the interval [0,1]. We do this to make these four variables be in the same rank and so 
for GP it will be easier to make and combine mathematical expression including 
constants because these will be in similar ranks, and so we won´t be combining 
expressions with out-of-rank values. 

3.2.1   Configuration 
 
As we still want to obtain one tree with the shape of an IF-THEN-ELSE classifier 
rule, we will use a terminal and function set similar to the ones explained in section 
3.1.1 and shown in table 1. The only exception is the use of random constants: now 
they will not be within the rank [1,80], but in the rank [0,1] because as we have the 
data normalized in that rank, we need the constants to be in the same rank too. 

3.2.2   Results 
 
The best set of parameters found for solving this problem is the same as described in 
section 3.1.2, shown in table 2. With these parameters, the best expression found, with 



a fitness of 100%, computed with the same machine and after 7 hours, is the 
following: 
 
IF (X2 < 0.373) 
THEN Setosa 
ELSE  

IF (((0.483>((X4-0.799)*(0.483%(X1-X2)))) AND ((X3> 
0.701) OR (X4>(X1-(0.182+X3)*(0.483%(X1-X2)))))) OR 
(((-0.132)*((X1*X2)%((0.821*(0.721-(X1-(0.182+X3)))) 
-(0.182+X3))))>(0.483%(X1-0.701)))) 

THEN 
IF ((((X4>(-0.132*((X1*X1)%(0.721-(0.182+X3)))) AND 

(X4>((-0.132) * (0.483%(0.721-(((X1-((0.182+X3) * 
0.877))*(0.483%(X1-X2)))*(0.483%(0.182+X3)))))))) 
AND (0.821>((-0.132)*(0.483%(X1-0.701))))) AND 
(X4>(-0.132*(X4 % (0.721-(((X1-(0.182+X3))*(0.483% 
(X1-X2)))*(0.483%(0.182+X3)))))))) OR ((X3>(X1-(-
0.132))) OR ((X2>0.721) AND (X4>((-0.132)*(0.483% 
(X1-((0.182+X3)*0.877)))))))) 

THEN  
IF (((0.721>(X2*X4)) AND (X4>X2)) OR (((X1<0.877) 

OR (0.799>X4)) OR (X3>0.799))) 
THEN Verginica 
ELSE Versicolor 

ELSE Versicolor 
ELSE Versicolor 

 
Note that the second expression (obtained with pre-processing) has better fitness, 

and it has been found in less time, so with a small pre-processing of the data we 
improved the performance of GP, in the fitness obtained and in the time taken to 
develop the desired expression. 

4   Three-tree classification 

In this section we will solve the problem in a different point of view. Now we will use 
GP not for making a simple classification into one of the three classes, but to extract 
three boolean rules to determine whether a particular data point belongs to each specie 
of flower. 

As we have three decision rules, it will have an additional advantage: if, for the 
same data point, none of the rules make an output as true, or if more than one make an 
output as true, then we can conclude that this point is now well classified by the 
system, i.e., we can detect some errors made by the system. 



4.1   Configuration 

To obtain these boolean rules, we configure GP for obtaining boolean expressions: 
now the resulting type will be BOOLEAN. As boolean elements we will have the IF-
THEN-ELSE classifier rules (accepting three children with BOOLEAN type), 
relational operators, needed for establishing relations between variables and constants, 
and boolean operators. 

We will also need the four variables and random constants, now inside the interval 
[0,1], because now we are working directly with normalized values. The complete 
terminal and function set is shown on table 3. 
 

 Name Returning type Parameter type 
X1, X2, X3, X4 REAL Terminal 

set [0, 1] REAL 
IF-THEN-ELSE BOOLEAN BOOLEAN, BOOLEAN, 

BOOLEAN 
+, -, *, % REAL REAL, REAL 

<, >,>=,<= BOOLEAN REAL, REAL 
AND, OR BOOLEAN BOOLEAN, BOOLEAN 

Function 
set 

NOT BOOLEAN BOOLEAN 

Table 3. Terminal and function sets used for the three-tree classification 

4.2   Results 

The set of parameters which gave better results are the same as described in section 
3.1.2, and shown on table 2. With these elements, the results obtained, with the inputs 
already normalized, can be seen on table 4. Note that the third expression (used for 
Iris Virginica) has a fitness of 99.33% success, that is, it fails on one case out of the 
150. This case is classified by the system as both Virginica and Versicolor, which is 
an invalid exit and it is detected. So we can consider that the system doesn´t have any 
fail and gets a fitness of 100% success. 

 

Table 4. Expressions obtained for classifying into the three different classes. 

The comparison with other techniques can be seen on the following table: 

Flower type Expression obtained Fitness 
Setosa (X1 < 0.3141) 100% 

Versicolor (((0.677>X3) OR (0.526<X2<(0.736))) AND 
(((0.610<X1<0.721) OR 

((0.3360<X1<0.526) OR (0.526<X2< 0.721))) AND 
((X3>X1) OR (0.677>X1)))) 

100% 

Virginica (((X1>X2) OR (X2>0.718)) AND ((X2>X4) OR 
(((0.739<X2<0.765) OR (X4>0.902)) OR (X1>X3)))) 

99.33% 



 
Method Type Fitness Reference 
Proposed here 
ReFuNN 
C-MLP2LN 
SSV 
ANN 
Grobian 
GA+NN 
NEFCLASS 
FuNe-I 

Rules 
Fuzzy 
Crisp 
Crisp 
Weigths 
Rough 
Weigths 
Fuzzy 
Fuzzy 

100% 
95.7% 
98.0% 
98.0% 
98.67% 
100.0% 
100.0% 
96.7% 
96.0% 

 
[15] 
[14] 
[14] 
[16] 
[17] 
[18] 
[19] 
[20] 

Table 5. Comparison between the method proposed here and other different methods. 

The distributions obtained from these three rules can be seen on Fig. 2. In this 
graph, as in the following, the X axis references petal width (X1) and Y axis 
references petal length (X2). 
 

Fig. 2. Distributions obtained for the three classes 

We can put these three distributions together in the same graph and compare them 
with the training set. This is shown on Fig 3. 

 

Fig. 3. Distributions obtained from the rules and from the training set. 
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In this figure we can see that the rule extraction system tries to join those values 
which depend on each classification and tries to isolate them from those values 
dependent on other classifications. The intersection areas are those in which the 
system makes incorrect outputs indicating that the given output is not correct and an 
individual analysis is necessary for those values to determine which class they belong. 

5   Conclusions 

As shown in the results, GP seems to be a powerful technique for extracting 
knowledge from databases. In this paper it has been applied to a well known problem, 
the iris flower data, with good results and the additional advantage of having as 
results mathematical expressions which relations the parameters. 

In the first attempt, the one-tree classifier, we show how we can adapt GP to 
produce decision rules with the desired shape, and so how we can obtain high-level 
explicit knowledge about the system. In this part we can also see that it is better to do 
a pre-processing to the data to improve the performance of GP. This is so because we 
put all of the parameters to the same rank and so the system finds easier to work with 
all variables and constants in the same rank (i.e., it does not find problems in 
combining constants and values with much different values). We can conclude that 
with a minimum analysis of the data we can improve the process in both ways: in the 
final success and in the time needed to obtain it. 

The second attempt, the three-tree classifier, gave additional knowledge. With the 
construction of three different boolean expressions, each one for each class, we 
obtained an additional knowledge: now we can detect errors made by the system. 

GP, then, is shown to be a suitable technique for extracting knowledge from 
databases, not only in classification problems: its ability to adapt to many different 
environments (the user selects which operator is needed to be included in the sets) 
allows the extraction of mathematical relations, decision rules, etc. 

6   Future works 

As we obtained better results with normalized parameters and different classification 
rules, the following step is to try to extract knowledge from artificial neural networks 
(ANNs) trained with the iris flower data as training set. As was shown on [16] and 
[21], the maximum fitness they can obtain is a success of 98.67%. With the system 
proposed here, we must be able to extract the knowledge contained in the ANNs not 
only in the training set, but also in new data points, because ANNs have the ability of 
generalization and once they are trained they accept as inputs values not present in the 
training set and are supposed to give good coherent outputs. 
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