Neural Networks Evolutionary Learning in Chess
Game

Alberto Carrascal, Daniel Manrique, Juan Rios, Claudio Rossi

Artificial Intelligence Department
Facultad de Informatica;, Univ. Politécnica de Madrid; Spain
jrios@fi.upm.es

Abstract. This paper proposes a new learning method based on evolutionary
techniques to train artificial neural networks for playing chess. Instead of
generating the following movement, artificial neural networks are proposed to
accomplish the evaluation of each position generated by a search algorithm. A
real-coded genetic algorithm combined with an improved version of the
morphological crossover operator has been employed to train the neural
networks. A self-play algorithm is applied to calculate the fitness of the
individuals, which represent a set of weights and biases of a neural
architecture.

1. Introduction

Most of chess-playing computer programs use highly optimized search algorithms,
which generate a set of positions [1]. The evaluation of these positions is calculated
by using a linear function, in which some features relative to the game are considered
by means of a set of values [2]. Normally, these weighting values are arbitrary
chosen, though there exist more elaborated approaches for their tuning, such as
temporal differences [3], inductive inference [4] or genetic algorithms [5]. The
possibilities of these kind of evaluation functions are very limited, since they only
contemplate linear relations between the different features that describe a position.
Other researches convert the symbolic rules of the chess into numerical
information that neural networks can learn [6]. In this kind of approaches, the neural
network provides the next movement to be accomplished. Databases associated with
already analyzed known positions provide the set of training patterns to be used with
learning methods based on gradient descent [7]. The learning process consists on
minimizing the differences between the movements returned by the neural network
and the ones stored in the database. Since the number of possible movements to be
made in a certain instant is very large, the use of these methods is limited to known
positions. This is the case of the endgames. These supervised learning algorithms
present two mayor disadvantages for this kind of problems. First, the high number of
positions to analyse. Second, using subjective valuations for a certain position do not
guarantee generating the most suitable movement. In order to avoid these problems,
the use of unsupervised learning techniques such as genetic algorithms have been

2 Alberto Carrascal, Daniel Manrique, Juan Rios, Claudio Rossi

employed on the game of checkers [8]. The disadvantage of this approach is the high
number of input variables used: one per checkers square.

This paper presents a neural-genetic chess engine based on a neural network as
a cvaluation function that does not provide the next movement to be accomplished,
but the valuation of the positions generated by an alpha-beta search algorithm. The
genetic algorithm is based on a new crossover operator, called morphological
crossover. Each individual in the genetic population codifies a set of weights and
biases of a neural network that represents a chess player. The fitness of an individual
is proportional to the number of games won against the other individuals of the
population.

2. Neural Network as Evaluation Function

Using a neural network as evaluation function, instead of a linear function, offers a
more flexible data processing associated to a chess position. Data processing
comprises multiples non-linear relations among all analyzed chess position features.
In this respect, an artificial neural network is able to learn more complex symbolic
rules of the chess game.

Using an excessively complex neural network would be unviable due to the
high computational cost of the training and execution processes since the number of
position to evaluate is very large. In the results section, it is shown how it is possible
to solve this problem using a generalized feed forward neural network with only one
hidden layer. The neural architecture consists on ten input neurons (one per chess
position feature), ten hidden neurons and one output neuron.

Features Value | Features Value

Stuff 0 Isolated 0

advantage pawns

Bishops pair |0 Passed 0
pawns

Doubled 0 Center)

pawns control

Pawns -2 .

advance King safety |0

Stuff 1

mobility

Stuff -1

coordination

Fig. 1. Valued chess features for a given state of the chess game.

Aspects such like the stuff advantage, the pieces mobility, pawn structure or
pair of bishops are numerically represented as shown in table 1. These values are
standardized and given to the input neurons of the neural network. The stuff
advantage fits tactics game considerations whereas the rest of features fit more

Neural Networks Evolutionary Learning in Chess Game 3

strategic chess game considerations. The output of the neural network is a numerical
value that represents the position valuation. This value is used by the alpha-beta
search algorithm to discriminate the possible movements to accomplish. Figure 1
shows on the right an example of the inputs received by the neural network for the
state of the chessboard on the left.

Table 1. Computation of the characteristics of a chessboard state: p (pawn), b (bishop), r
(rook), k (knight), q (queen) and k (king).

f Chess Formula to compute the chess feature
eature
Ay (#pw - #py) + av (#b,, - #by) + a(#Hry, - #1y) + a(#Hk,, - #l) +
Staff aq(#qw h #qb)
advantage where a; are constant weights for each chess piece
= number of pieces
1, Two white opposite bishops and not two black opposite
Bishop pair 0, Both or neither white and black two opposite bishops
-1, Two black opposite bishops and two white opposite bishops
Doubled #dpy - #dpy
pawns #dp = Number of doubled pawns
#py #pn
Pawns > Ipn) =2 0-36p,)
advance i=1 i=1
J(p) =1 pawn row number
S Difference in the number of squares not dominated by the
tuff) o .
mobility opponent that can be ocqupled by‘whlte pieces with respect to the
black ones (bishop, knight, rook and queen)
Stuff Difference of the sum of the pieces protecting each white piece
coordination with respect to the black ones (except the king)
Isolated #ipy - #ipy
pawns #ip = Number of isolated pawns
Passed #PPw - #pPo
pawns #pp = Number of passed pawns
Center Difference of the sum of the pieces dominating each of the
control center squares by the white, with respect to the black
Difference of the sum of white pieces that can put the
King safety opponent’s King into check with respect to the black (plus the

castling)

4 Alberto Carrascal, Daniel Manrique, Juan Rios, Claudio Rossi

3. Evolutionary Neural Network Training

Using genetic algorithms as neural network training method needs a previous
codification stage. The figure 2 shows how the neural networks are codified by the
individuals in the genetic algorithm.

The final real-numbered string obtained as result of the codification process
contains the weights and biases of the neural architecture. This process is made from
the upper to the lower neuron and from the input to the output layer. Finally, the
biases are codified in the same way.

Ws2 W31 W32 W42 W53 Ws4 b3 ba bs

) 3

‘0,56 0,12 0,9 0,8 0,2 0,9 0,31 0,82 0,11

Real-coded string representing the
neural network on the left

W52=0,56

Fig. 2. Neural network codification

3.1 The Morphological Crossover for Chess Position Evaluation

Morphological crossover has been designed to solve general purpose optimization
problems with real-coded genetic algorithms [9] [10]. This is the case when training
artificial neural networks where weights and biases are coded by the individuals of
the population..

Let s[0Dg be a point in the search space, D, that comprises the set of all
possible weights and biases of a given neural architecture. The neural configuration s
is defined by the string s=(ao, ay, ..., a5.1), where a;l] . This operator works with each
gene in the parents independently to obtain the corresponding gene in the two new
neural configurations that are generated as a result of this operator. Let s;, ..., s, be
an odd number of neural configurations chosen from the actual population to be
crossed, the n by / progenitors matrix is defined as:

@10 aq ayy-1
G = a 20 an aa1-1 .
where s; = (aj, ai1, ..., a;721),1=1,.., 0.
Ao a1 Ay -1

The crossover operator works with each column f=(a;;,as;, ...,a,) in matrix G
obtaining genes o; and o; that belong to the two new neural configurations
0=(00,01....,01.1) and 0° = (07,0"1, ...,0 1.1).

Neural Networks Evolutionary Learning in Chess Game 5

The procedure, adapted from the original morphological crossover, to generate
the new sets of weights and biases o0, 0’[IDy is the following:

a./ 'The morphological gradient operator, gy(f)): Ds— [, is applied on each vector f,
i=0, 1, .., /-1, with a structuring element b:D,—[] defined as:
b(x) =0,0x 0D, , Dv={-E(n/2), ..., 0, ..., E(/2)},
where E(x) the integer part of x;
g; is obtained as the value:

g =g () Ew2)+1) i{0, 1, .. 1-1}
If value g; is high, that gene in the population is heterogeneous, while if it is low,
that means that the values of that gene are converging.

b./ Let be ¢: O — [the exploration / exploitation (EE) function that guides the
genetic algorithm through the search space to the optimal solution. The
maximum gene is defined as:

Simax = maX(fD_q)(gl)
Likewise, the minimum gene is defined as:
Zimin = MIn(f)+ ¢(g;)

Those values determine the crossover interval C=[giin. Eimax], from where the
desired value o; is randomly taken. The i™ gene for the other descendant o’; is
obtained from inside the crossover interval using the following formula:

0’i= Zimax T Limin - O;

The EE function allows to dynamically control the range of the crossover interval
to avoid falling in local minima and to get a high convergence speed. When the
individuals to be crossed are diverse (which implies a high value of the gradient) the
crossover interval is made narrower according to the values max(f;) and min(f), thus
allowing to explore its interior searching for the optimum much faster. On the other
hand, if the individuals to be crossed are very similar (gradient close to zero), which
means that the population is converging, then it is advisable to expand the interval
[min(f),max(f)] to allow the exploration of new points in the domain, thus avoiding
the possible convergence to a local optimum.

-(0.8g,)-001 if g <0.05

P(g;) = {(0_421'&) -0.021 otherwise

0 0.05

001 -005

Fig,. 3. The EE function used by the evolutionary neural network training

The EE function employed by the evolutionary neural network training is shown in
figure 3. This function is quite different from the one used in the original

6 Alberto Carrascal, Daniel Manrique, Juan Rios, Claudio Rossi

morphological crossover. It has been designed to increase the exploitation
capabilities of the genetic algorithm to get faster convergence speed in the neural
networks training process. This way it is possible to evaluate more chess positions in
less time to play better.

3.2 Fitness Evaluation and Replacement Criteria

Once the initial population of the genetic algorithm has been generated, the
fitness of each individual is calculated. As the individuals represent different chess
player minds, they are evaluated by playing a match with white color and other with
black color against themselves. The result of these matches is accumulated, scoring
+1 for each victory, + % for draws and 0 for each defeat.

Each genetic algorithm iteration generates two new descendants as the result of
applying the morphological crossover operator. The new offspring replaces the two
worst individuals of the population using a SSGA criterion (Steady-State
replacement Genetic Algorithm) [10]. The individuals of the population are evaluated
again, not considering the previous fitness. This way, the new individuals compete in
equal conditions with the rest of individuals.

4. Results

The neural genetic system proposed employs a genetic algorithm, with the
morphological crossover, to train the artificial neural network executing one
thousand genetic iterations. The figure 4 shows the mean score reached by the best
individual in each genetic iteration after playing one match with white and black
color with the rest of the individuals. It can be seen how the score is getting high,
which represents that the artificial neural network is adapting, more adequately in
each genetic iteration, to the chess game.

1200 7
1000 T
800 -
600 -
400 -
200 7

Score

s \(OQ qfoo éoo 9?30 (9030 6”0 /\(OQ %030 q(oo
Genetic algorithm iterations

Fig, 4. Score evolution of the best players

Neural Networks Evolutionary Learning in Chess Game 7

When the genetic algorithm is converging, all the individuals of the population
have very similar and high play level. In these conditions, the score stables, being
956 the mean value as shown in figure 4.

The neural-genetic-system has been compared with the AIChess program [5]
(also based on genetic algorithms), playing 100 matches (50 with white color and 50
with black color). The results are shown in the table 2. Each row represents the
percentage of matches won, drawn and lost respectively. The neural-genetic-system
clearly outperforms AIChess. It is important to highlight that the number of won
matches playing with black color is a 21% less that playing with white color in the
case of the proposed system. This descent is 44% for the AIChess.

Table 2. Results of the proposed system against AIChess.

White Black
Win 76% 60%
Draw 14 % 22 %
Lose 10 % 18 %

5. Conclusions

This paper presents a new neural-genetic chess engine that employs artificial neural
networks as evaluation function. The training process is unsupervised, so the skill of
this system is gradually increased as the genetic algorithm converges. The results
show that it is possible to improve the quality level of the engine by itself, playing
the individuals against others. It is seen how it is possible to produce competent chess
engines that exceed the expertise of the creator without using an expert knowledge.
Artificial neural networks allow to use non-linear functions that improve the results.
It is also possible to consider new relevant variables by simply adding new input
neurons in order to obtain better performance. Using databases for openings and
endgames improve the global performance of the neural-genetic system, but the
research purpose is to show that this system reaches a satisfactory play level
performance.

8

Alberto Carrascal, Daniel Manrique, Juan Rios, Claudio Rossi

Acknowledgment

The work of the fourth author was funded by the Secretaria de Estado de Educacién y
Universidades of the Ministerio de Educacion, Cultura y Deporte of Spain.

References

10.

11.

Heinz, E. A.: Scalable search in computer chess: algorithmic enhancements and
experiments at high search depths. Friedrick Vieweg & Son/Morgan Kaufmann Publishers
(2000).

Shannon, C. E.: Programming a digital computer for playing chess. Philosophy Magazine,
41, 256-275 (1950).

Baxter, J., Tridgell, A., Weaver, L.: Experiments in parameter learning using temporal
differences. ICCA Journal, 21 (2), (1998) 84-99.

Jansen, A.R., Dowe, D. L., Farr, G. E.: Inductive inference of chess player strategy. Pacific
Rim Intemnational Conference on Artificial Intelligence, (2000)61-71.

Kendall, G., Whitwell, G.: An evolutionary approach for the tuning of a chess evaluation
function using population dynamics. Proceedings of the IEEE Congress on Evolutionary
Computation Seoul, Korea (2001)27-30.

Posthoft, C., Schawelski, S., Schlosser, M.: Neural network learning in a chess endgame.
IEEE World Congress on Computational Intelligence, Orlando (1994) 3420-3425.

Nunn, J.: Extracting information from endgame databases. ICCA Journal, 16 (4) (1993)
191-200.

Chellapilla, K., Fogel, D.: Evolving an expert checkers playing program without using
human expertise. I[EEE Transactions on Evolutionary Computation, Vol. 5, No. 4 (2001).
Barrios, D., Manrique, D., Porras, J., Rios, J.: Real-coded genetic algorithms based on
mathematical morphology. 3rd International Workshop on Statistical Techniques in
Pattern Recognition, Alicante, Spain (2000) 706-715.

Barrios, D., Carrascal, A., Manrique, D., Rios, J.. ADANNET: automatic design of
artificial neural networks by evolutionary techniques. 21% SGES International Conference
on Knowledge Based Systems and Applied Artificial Intelligence, Cambridge, UK (Dec
2001) 67-80.

Whitley, D., Starkweather, T.: GENITOR II: a distributed genetic algorithm. journal of
experimental and theoretical artificial intelligence, (2) (1990) 189-214.

