Finding the best path in a partially known graph

Antonio Moreno

Computer Science and Mathematics Department
University Rovirai Virgili - URV
Av. dels Paisos Catalans, 26. 43007-Tarragona, Spain
anor eno@t se. urv. es

Abstract. The problem of finding the shortest path between two nodss in a
direded, positively labelled graph hes been extensively studied. It can be solved
using global methods (such as an A* heuristic seach) or locd methods (such as
the LRTA* agorithm). However, these techniques require the graph to be
completely known in advance In this paper we propose amodificaion to the
LRTA* agorithm which permits the use of this tedhnique to find the shortest
pathsin graphs which are partialy unknown or change dynamicdly over time.

1. Introduction

Finding the shortest path between two nodes in adireaed, positively labelled graph is
one of the most basic problems in Artificial Intelligence, and it has been extensively
studied in the literature. If the graph is gatic and completely known, it is possble to
find the complete optimal path between two gven nodes by making an A* seach of
the target node from the origin noce ([6]). This method is outlined in sedion 2 The
main problem of this technique resides in its computational cost and the need of
knowing the whole graph. One way of overcoming the computational cost is to have
local agorithms, in which the dedsion d which edge to follow is taken in each node
of the path (rather than cdculating the whole path in advance). An example of this
kind of algorithms is the LRTA* (Learning Real Time A*) procedure ([1]), shown in
sedion 3 This method is complete, but it does not guarantee the optimal solution;
however, it has the nice property of converging towards the optimal path after
repeaed executions. The main disadvantage of this method is that it also requires to
know the complete graph. We have developed a projed ([4]), described in sedion 4
in which an autonomous car is requested to find the optimal routes between pairs of
nodes in a graph that it does not know. The main ideais that the car discovers the
edges and nodks of the graph when it travels through it. Moreover, the graph is also
dynamic, so edges can appea or disappear over time. In sedion 5we show how the
LRTA* may be modified to help the ca to find the optimal routes in this dynamic and
partially urknown environment. The paper finishes with a brief discusson d the
positive and regative feaures of this approac.

2. A global method: A*
There ae severa techniques that may be used to find the shortest path between two

nodes in a direded, positively labelled graph, when it is known and static (e.g. the
clasdcd Dijkstra dgorithm may be gplied, [2]). In this dion we describe one of

them: the A* heuristic search ([6]). All the methods described in the paper will be
illustrated with the help of the graph shown in fig. 1. In al the examples G=(V,E)
denotes agraph, where V isaset of v nodes and E is a set of e labelled edges.

B

D

Fig.1: Graph to be used in the examples
(A-0,5B-3,8 C-3,5 D-5,0 E-7,4 F-9,6 G-6,5)

An A* search builds a tree following this procedure:

VisitedNodes := empty set;
T :=treewith root R (the initial node);
PathCost[R] :=0;
f(R) := h(R);
found :=false;
while there are unvisited leavesin T and not(found) do
p :=leaf of T that isnot in VisitedNodes with minimum f;
if pisthetarget node
then found := true;
else
VisitedNodes := VisitedNodes + p;
for each edge (p,q,label) in E leaving from p do
if gisnot in VisitedNodes then
add g asason of pinthetree;
PathCost[q] := PathCost(p) + label;
f(q) := PathCost[q] + h(a);
end if;
end for;
end if;
end while;

PathCost is an array, indexed by the nodes of the graph, that stores the optimal cost of
going from the initial node R to each node in the graph. h is a heuristic function that
estimates the cost of arriving from a node to the target node. This function is used to
compute the function f, which takes into account the cost of going from R to a hode
plus the estimated cost of going from the node to the target. In order for this algorithm
to find the optimal solution, the heuristic function h must be admissible (i.e. it must
never over-estimate the real cost of reaching the target node). The shortest path to the
target node is recovered by following the branch from the root to that node. In the
example shown in fig. 1, the tree that would be built to find the optimal path between
A and E would be the one show in fig.2. In that figure you can see the f value of each

node. The numbers outside the nodes indicate the order in which the nodes are

selected and expanded.
(9

4 2 2
B
9.89
6
CRONE

Fig. 2. Tree developed by the A* agorithm to find the best path between A and E

In thistree it may be seen that the best path from A to E is ADE, and its cost is 11.54.
The maximum number of nodes in the tree is O(v* V), because in each step of the loop
the set VisitedNodes is increased in one node and we only add edges that go to
unvisited nodes.

The main drawbacks of the A* search are the following:

e It calculates the whole path from the start node to the target node, and its
computational cost is high (at least quadratic with respect to the number of nodes
of the graph, since that is the number of nodes we may have in the tree).

e Thewhole graph hasto be completely known.

e The graph must be static. If the graph is modified, the optimal paths have to be
re-calculated.

3. A local method: LRTA*

There are many applications in which the path betwen two nodes has to be calculated
in rea time, and the use of expensive global methods such as A* is unfeasible. In
these situations it is necessary to discover the optimal path at the same time that it is
being traversed, rather than first calculating the whole path and then following it.
Therefore, in this case we need local methods, which compute in each node which is
the next branch that must be followed in the graph. One of these methods is the
LRTA* agorithm ([1]).

3.1LRTA*

The Learning Real Time A* method ([1]) is a procedure that searches the optimal path
between two nodesin alocal way. It starts by deciding which edge to follow from the
initial node. When the edge is taken and the next node is reached, then it decides
which is the next branch to follow. This procedure is repeated until the target node is

reached. It must be noticed that, by taking purely local decisions, it is not possible to
guarantee that the optimal path is being followed. The computation needed to take the
decision in anode p isthe following:

for al the edges e=(p,q,label) in E leaving from p do
f(e) = label + h(q,target);

end for;

e := edge with minimum f; (ties are broken randomly)

h(ptarget) := f(e);

In this code, h(nl,n2) is a measure that estimates the cost of going from node nl to
n2. This measure, as in the case of the A* agorithm, must always be admissible. A
simple way of initializing this measure is to set it to O or to the length of the straight
line between nl and n2. The function f applied to an edge (p,q,label) estimates the
cost of going from p to the target node by following that edge; it simply adds the
length of the edge towards q and the estimation of the cost of going from g to the
target node. It isinteresting to note that the last line updates the estimate of the cost of
reaching the target node from p, after having evaluated the costs of al the edges
leaving from that node. The computational cost of the decision to take in each node is
just linear with respect to the number of edges leaving that node.

3.2 Discussion of LRTA*
The following properties of this method are known ([1], proofsin [3]):

Property 1. Completeness of LRTA*

In a graph with afinite number of nodes with positive link costs, in which there exists
a path from every node to a goal node, and starting with non-negative admissible
initial estimates, LRTA* iscomplete, i.e. it always reaches agoa node.

Property 2. Convergence to the optimal solution

If the initial estimates are admissible, the updates of the estimates tend to converge
towards the optimal solution through repeated applications of the algorithm, i.e. the
value of h(nl,n2) keeps increasing and it converges towards the cost of the optimal
path between nl and n2.

Thus, the main advantages of this method is that it runs in real-time (the decision of
which edge to follow is taken directly with loca information in each node), it aways
finds a path to the target node (if it exists) and it learns the optimal paths through
repeated traversals of the graph (due to the update of the h estimates).

It is interesting to see the application of this algorithm to the problem of finding the
best route from A to E in the graph shown in fig. 1. Initialy, h(n1,n2) will have the
length of the straight line from n1 to n2. The following decisions would be taken:

e Stepl(nodeA)
f(B)=4.24+5.65=9.89 f(C)=3+4.12=7.12 f(D)=7.07+4.47=11.54
The edge (A,C) is chosen, and h(A,E) is updated to 7.12.
e Step 2 (node C)
f(A)=3+7.12=10.12 f(G)=3+1.41=4.41
The edge (C,G) is chosen, and h(C,E) is updated to 4.41.

e Step 3 (node G)

f(C)=3+4.41=7.41

The edge (G,C) is chosen, and h(G,E) is updated to 7.41.
e Step 4 (node C)

f(A)=3+7.12=10.12 f(G)=3+7.41=10.41

The edge (C,A) is chosen, and h(C,E) isupdated to 10.12.
e Step5(nodeA)

f(B)=4.24+5.65=9.89 f(C)=3+10.12=13.12 f(D)=7.07+4.47=11.54

The edge (A,B) is chosen, and h(A,E) is updated to 9.89.
e Step 6 (node B)

f(A)=4.24+9.89=14.13 f(F)=6.32+2.82=9.14

The edge (B,F) is chosen, and h(B,E) is updated to 9.14.
e Step 7 (nodeF)

f(B)=6.32+9.14=15.46 f(E)=2.82+0=2.82

The edge (F,E) is chosen, and the final node is reached.

The path found by the algorithm is ACGCABFE, which isfar from optimal. It has first
tried to go towards E by the most promising edge, which was AC, but then it had to
come back after reaching a dead end in G. Furthermore, the second route that it has
tried (ABFE), has led to the goal node but is not optimal, since ADE is shorter.
However, let us see what happens if we use the estimates learned in this execution to
find again a path between A and E:

e Stepl(nodeA)
f(B)=4.24+9.14=13.38 f(C)=3+10.12=13.12 f(D)=7.07+4.47=11.54
The edge (A,D) is chosen, and h(A E) is updated to 11.54.
Step2(nodeD)
f(A)=7.07+11.54=18.61 f(E)=4.47+0=4.47
The edge (D,E) is chosen, and the final node is reached.

Thus, the second time that we search the path from A to E the algorithm finds the
optimal path, and h(A,E) has converged towards the cost of this minimal path. In any
other request of the best path from A to E, the path ADE would be followed and h
would not be modified.

Degpite the positive properties of the LRTA* algorithm, it can only be applied if we
have a graph that is static and we know, in each node, which are the edges that leave
from that node. Therefore, it will not be possible to apply this algorithm directly in
casesin which the graph is only partialy known or it changesin time. Thisis the case
of the application described in the next section.

4. A dynamic and unknown environment

We developed a project in which the objective was to construct a small car that could
follow the edges of a graph painted on the floor ([4]). The car has a camera that
alows it to discover the edges and nodes of the graph. Once the mechanical and
vision details were finished and the car was able to follow the white lines and go from
node to node, we had to construct the software component. The user can specify paths
that the car has to find: from the current node to a target node. When the car reaches
the target node, the user defines a new target, and so on. One of the challenges of the

project was to build a path finding algorithm that could find the best paths to the
target node, but taking into account three important facts:

e The car has initially no knowledge of the graph. It constructs the description of
the graph when it istraversing it.

e The graph may be dynamically changing in time (at a moderate rate, otherwise
the problem of trying to find optimal routes would be impossible to tackle). That
means that we can add or remove edges of the graph from time to time.

* We wanted to define an algorithm that decides in each node which is the most
promising branch to follow, i.e. the algorithm has to take local decisions, it does
not have to construct the whole path in advance.

The car always maintains a partial description of the graph, with the edges and nodes
that it has discovered in previous routes. Note that, on one side, there may be many
edges and nodes which the agent does not know yet; on the other hand, there may be
wrong information in the graph constructed by the car (it may contain links that no
longer exist in the graph, due to its dynamic nature). These characteristics of the
domain make it unfeasible to use the LRTA* algorithm directly. In the next section we
explain how we used the main idea of the agorithm to provide a good path finding
algorithm for the car.

5. Modification of the LRTA* algorithm

When the car is located in a particular node, it receives the request of travelling from
that node to another one. The objective of our project was to find the optimal path
from the present node to the target node. Of course, the dynamic changes in the graph
and the fact that the car maintains only a partial description of the graph make it
impossible to ensure that the optimal path will always be followed. However, it is still
feasible to develop an intelligent algorithm that approximates (and learns through
time) the optimal results. In the next subsections we detail the input data of the
algorithm and the process that it follows to select the best branch in each node. After
that, we show an example of the application of the algorithm.

5.1 Input data of the path finding algorithm
The data that the path finding algorithm has are the following:

« Coordinates (x,y) of the actual node and the target node.

» Partia description of the graph, with the edges and nodes that have already been
visited (some edges might no longer exist).

* Information about the edges that leave from the present node.

This last point deserves some comments. The car has a bunch of circular sensors that
give information about the white lines (the edges) that |eave from the present node.
Thus, the car knows how many edges leave from the actual node and the angle of
each one; however, it can not know the length of the edges or the coordinates of the

succesor nodes. When the car reaches a node, it compares the locd information about
the edges with the partial graph; there aethreepossble situations:

* Anedge present in the partial graph does not longer exist. In this case, the elgeis
removed from the partia graph.

* Anedge of the partial graph coincides with ore of the edges lealing the node (we
can only compare its angle). In this case, it is assuumed that the elge has not
changed since the last time it was traversed; therefore, the ca knows its length
and the aordinates of the next node.

e An edge leaving the nock is not refleded in the partial graph. In this case, either
the alge is new or it smply had not been traversed by the ca before. The car
only knows the diredion of the edge, but it does nat know its length.

With thisinformation the ca hasto dedde which of the edges has to be foll owed. For
instance, in fig. 3 the ca is located in P and has to dedde between two known
branches (that go to Q and R) and three unknown edges. After having traversed the
chosen edge, the ca will know its length and the coordinates of the next node, and it
will add this information to the partial graph (if it is the first time that the ca travels

through that edge).
O
_____________ >
, e

’
2

K

©
Q

225°

Fig. 3 Dedsion problem in node P

5.2. Decision algorithm

The dgorithm that the ca follows to dedde which edge to take follows the same
basic ideathan LRTA*. In the cae of a known edge e=(p,q,label) leaving from the
present node p, we make the same computation: f(e) = label + h(g,target). In the cae
of an urknown edge e, from which only the diredion is known, we propose to make
the most optimistic evaluation d it: to assume that it has only length 1 (the minimal
length that the car may move, which is the minimal length of an edge) and then we
read a node from which there is a straight link to the target node. Therefore, we will
compute f(e) = 1 + distance(s,target), where sis a point located at distance 1 from p
in the diredion of the unknown edge. Thisideaisill ustrated in fig. 4, when the ca is
in nock P and has to go towards the target node T. The evaluations of the unknown
edges are f(el)=1+d1, f(e2)=1+d2 and f(e3)=1+d3. The evaluations of the known
edges are f(PQ)= distance(PQ) + h(Q,T) and f(PR)= distance(PR)+h(R,T).

Figure 4. Optimistic evaluation of the unknown edges

5.3 Example

Let us consider again the problem of finding the optimal path between A and E in the
graph shown in fig.1. We will now apply the algorithm outlined in the previous
section, considering that initially the car does not have any knowledge of the graph (it
only knowsits actual coordinates and the coordinates of the target node E). Thisisthe
process followed by the a gorithm:

e Step1(nodeA, 3 unknown edges)
f(el)=1+6.52=7.52 f(e2)=1+6.08=7.08 f(€3)=1+6.30=7.30
The second edge (which is (A,C)) is chosen, and h(A E) is updated to 7.08
. Step 2 (node C, 1 known edge -CA- and 1 unknown edge)
f(A)=3+7.08=10.08 f(e4)=1+3.16=4.16
The unknown edge (which is (C,G)) is chosen, and h(C,E) is updated to 4.16.
. Step 3 (node G, 1 known edge, GC)
f(C)=3+4.16=7.16
The edge (G,C) is chosen, and h(G,E) is updated to 7.16.
. Step 4 (node C, 2 known edges)
f(A)=3+7.08=10.08 f(G)=3+7.16=10.16
The edge (C,A) is chosen, and h(C,E) is updated to 10.08.
. Step 5 (node A, 1 known edge -AC- and 2 unknown edges)
f(el)=1+6.52=7.52 f(C)=3+10.08=13.08 f(e3)=1+6.30=7.30
The last unknown edge (which is (A,D)) is chosen, and h(A,E) is updated to 7.30.
e Step 6 (node D, 1 known edge -DA- and 1 unknown edge)
f(A)=7.07+7.30=14.37 f(e4)=1+3.47=4.47
The unknown edge (which is (D,E)) is chosen, and h(D,E) is updated to 4.47. The
final nodeis reached.

Note that, in this example, the performance of the proposed modification of the
LRTA* algorithm is better than the one of the standard algorithm, since it discovers
the optimal route (ADE) after trying the most promising (but wrong) route through
nodes C and G. At this point, the car has knowledge of the edges AC, CG, AD and
DE. If we later ask again about the path from A to E, the decision process would be
the following:

e Step 1 (nodeA, 2 known edges -AC, AD- and 1 unknown edge)
f(e1)=1+6.52=7.52 f(C)=3+10.08=13.08 f(D)=7.07+4.47=11.54
The unknown edge (which is (A,B)) is chosen, and h(A E) is updated to 7.52.

e Step 2 (node B, 1 known edge -BA- and 1 unknown edge)
f(F)=4.24+7.52=11.76 f(€5)=1+3.32=4.32
The unknown edge (which is (B,F)) is chosen, and h(B,E) is updated to 4.32.
e Step 3 (nodeF, 1 known edge -FB- and 1 unknown edge)
f(B)=6.32+4.32=10.64 f(e6)=1+1.82=2.82
The unknown edge (which is (F,E)) is chosen, and h(F,E) is updated to 2.82. The
final nodeis reached.

In this case, even though the optimal route ADE was aready known, the car has
decided that it was worth exploring the unknown path through B and F, since it could
have been shorter (although, in fact, it is longer). After this travel, the car has already
visited all the edges of the graph. Let us see what happens if we ask for the path
between A and E for the third time:

e Step 1 (node A, 3 known edges)
f(B)=4.24+4.32=8.56 f(C)=3+10.08=13.08 f(D)=7.07+4.47=11.54
The edge (A,B) is chosen, and h(A,E) is updated to 8.56.
e Step 2 (node B, 2 known edges)
f(F)=6.32+2.82=9.14 f(A)=4.24+8.56=12.80
The edge (B,F) is chosen, and h(B,E) is updated to 9.14.
e Step 3 (nodeF, 2 known edges)
f(B)=6.32+9.14=15.46 f(E)=2.82+0=2.82
The edge (F,E) is chosen, and h(F,E) is updated to 2.82. The final node is reached.

This time the car would travel again by the non-optimal route ABFE, but it has
changed the estimation of the cost of arriving from B and A to E. These changes cause
adifferent behaviour in afourth request of the same route:

e Step1(nodeA, 3 known edges)
f(B)=4.24+9.14=13.38 f(C)=3+10.08=13.08 f(D)=7.07+4.47=11.54
The edge (A,D) is chosen, and h(A ,E) is updated to 11.54.
e Step 2 (node D, 2 known edges)
f(A)=7.07+11.54=18.61 f(E)=4.47+0=4.47
The edge (D,E) is chosen, and h(D,E) is updated to 4.47. The final node is reached.

Thistime the car follows the optimal route again, and updates the h estimates with the
actual values of this path. In any other request of the route from A to E, the car would
now always follow this path, and the h-estimations of A and D would no longer
change.

6. Discussion

In this paper we have described a modification of the LRTA* algorithm that allows its

application in domains in which the graph to be explored is only partialy known or

may change dynamically over time. This algorithms has the following positive

properties:

e ltisalocal agorithm, with a very reduced computational cost because it only
evaluates the branchs available in each node.

e The dgorithm may be used in graphs that are only partially known, using an
optimistic view of the unknown edges. If an unknown edge @an not posibly lead
to a shorter path that a known edge, it will not be explored. However, if there is
the passbility of finding a better path by exploring an unknown edge, the ca will
follow it.

e The etimations used in the heuristic evaluation d ead noce ae dways
admissble (both for known and unknown edges). Therefore, the properties of
completeness and convergence to the optimal solution after repeaed exeautions
are maintained in our version of the algorithm.

e If edges are removed dynamicdly from the graph, the estimates will continue to
be optimistic, since optimal paths can only get longer. When the ca arrives to
one of the nodes that was conreded to the removed edge, it will naticethat it no
longer exists and it will delete it from its partial representation. From that point
on, the ar will be &le, in succesive travels, to change the h estimates in order to
find again the optimal paths.

The two main drawbadks of the dgorithm are the foll owing:

* Aswe aededing with a partial representation d the graph and, furthermore, the
graph may change in time, we can never be sure that the car will follow the
optimal path between two nodes. However, if the graph reades a stable state and
the ca has made enough travels to update the h estimates to the adual values of
the optimal routes, then it will always foll ow these routes.

e If edges can be dynamicdly added to the graph, then the h estimates are no
longer admissble, and the properties of completeness and (eventual) optimality
arelost (for instance, adding alink between G and E in the example graph would
not modify the routes from A to E). This asped is the subjed of our future work.
We can advance some comments on thisisaue:

« If the new edge mnnedstwo nodesthat have still not been visited by the ca,
then the h estimates do nd have to be modified and the dgorithm will
continue to work corredly.

« We may re-set the h estimates to the Euclidean distance eab time that an
edgeisadded, and the ca will haveto lean again the optimal routes.

e The ca may be lucky enough to recver and learn again optimal paths using
the new edge, depending on the routesit is obliged to make.

References

[1] Korf, R.E., “Red-time heuristic seach". Artificial intelligence 42 (2-3), pp. 189-211,
1990.

[2] Dijkstra, EW., "A note on two problems in connexion with graphs’, Numerical
Mathematica, 1, pp. 269-271, 1959.

[3] Yokoo, M., Ishida, T., "Sead agorithms for agents’, in G.Weiss (Ed.), Multiagent
systems: a modern approach to Distributed Artificial Intelligence pp. 165-199. MIT Press
1990.

[4] Vargas, M., Medina, D., Ledn, X, "Vehiculo rastreador. Una aplicacion de la IA". MSc
projeds, University Rovirai Virgili. Tarragona, September 1999.

[5] Peal, J. "Heurigtics: intelligent search strategies for computer problem solving”. Addison
Wesley, 1984.

[6] Hart, P.E., Nilson, N.J,, Raphad, B., "A formal basis for the heuristic determination of
minimum cost paths', IEEE Transactions on Systems, Science and Cybernetics, SSC-4 (2),
pp. 100-107, 1968.

