Deliberative Server for Real-Time Agents

Carrascosa, C.; Rebollo, M.; Julian, V.; Botti, V.

Dept. Sistemas Informéticos y Computacién
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 - Valencia
Spain
Phone Number: 96 3877352

{carrasco ,mrebollo,vinglada, vbotti}@dsic .upv.es

Abstract. Over the last few years more complex and flexible techniques
have been needed to develop hard real-time systems. The agent paradigm
seems to be an appropriate approach to be applied in this area. In this pa-
per, an approach to incorporate agency characteristics in hard real-time
software systems is presented. This is done through a hard, real-time,
intelligent agent architecture, called ARTIS agent architecture. The AR-
TIS agent architecture incorporates a control module which manages the
agent behavior and controls the execution of the different agent compo-
nents. This paper is focused on an improvement of the control module.

Keywords: Intelligent Agents, control & real-time, meta-reasoning
Topics: Al in real-time
To be considered for Paper Track section

Deliberative Server for Real-Time Agents

Abstract. Over the last few years more complex and flexible techniques
have been needed to develop hard real-time systems. The agent paradigm
seems to be an appropriate approach to be applied in this area. In this pa-
per, an approach to incorporate agency characteristics in hard real-time
software systems is presented. This is done through a hard, real-time,
intelligent agent architecture, called ARTIS agent architecture. The AR-
TIS agent architecture incorporates a control module which manages the
agent behavior and controls the execution of the different agent compo-
nents. This paper is focused on an improvement of the control module.

1 Introduction

Over the last few years the use of the agent paradigm has increased sharply as an
important field of research within the Artificial Intelligence area. This paradigm
has been applied to different fields, such as control processes, mobile robots,
commercial applications, etc. Concurrently, a new discipline has emerged, called
Real-Time Artificial Intelligence, which provides useful techniques for solving
complex problems which require intelligence and real-time response times.

This paper takes the application of agents to hard real-time environments
as a starting point. In order to situate the topics, different definitions are pre-
sented. First, a Real-Time Environment is defined. This is an environment with
temporal restrictions that may have different features which affect its control.
Two of the main features of a real-time environment are non-deterministic and
dynamic. A Real-Time Environment is controlled by a Real-Time System (RTS),
which is defined as a system in which the correctness of the system depends not
only on the logical result of computation, but also on the time at which the re-
sults are produced [16]. In a RTS, some tasks have deadlines. A deadline defines
the greatest time interval in which the system can provide a response. If the
response is obtained after this time, it will probably not be useful. Occasionally,
some people confuse the term ”real-time” with ”on-line” or ”fast”. The main
feature of a RTS is not to always be interconnected or to be the fastest system.
A RTS should guarantee its temporal restrictions and, concurrently, it should
try to accomplish its goals. Researchers differentiate between two types of RTS.
First, a Hard Real-Time System is a RTS where the execution of a task after
its deadline is completely useless. Systems of this kind are critical systems, and
severe consequences will result if the timing responses are not satisfied. On the
other hand, a Soft Real-Time System is characterized by the fact that the exe-
cution of a task after its deadline only decreases the quality of the task result
[16]. Different techniques are needed for hard and soft RTS. In this paper, only
hard real-time systems are considered.

Once a RTS is defined, it is possible to define a Real-Time Artificial Intelli-
gence System (RTAIS) as a system that must accomplish complex and critical
processes under a probably dynamic environment with temporal restrictions by
using Al techniques. Previous approaches to RTAIS can be found in the lit-
erature. Anytime algorithms [4] and approximate processing [6] are the most
promising. One line of research in RTAIS has been to build large applications or
architectures that embody real-time concerns in many components [6], such as
Guardian [8], Phoenix [9] and CIRCA [11]. All these applications are soft RT'S
because they don’t assure the fulfillment of their temporal restrictions.

Within RTAIS research area, a Real-Time Agent (RTA) can be defined as an
agent with temporal restrictions. In the same way as RTS, it is possible to talk
about “hard” or ”soft” RTA. Almost all the existing approaches, like PRS [10],
the CELLO agent model [13] and, more recently, DECAF [7], are designed as
soft RTA (without critical temporal restrictions).

According to what has been stated, a hypothetical agent designed for hard
real-time environments must accomplish its goals, responsibilities and tasks with
the added difficulty of hard temporal restrictions. One of the main problems is
how to achieve agency taking into account the execution of critical tasks that
the agent should guarantee.

In this paper, an improvement to the control module (the incorporation of a
deliberative component) of an architecture for hard, real-time, intelligent agents
is presented. This architecture was previously presented in [1].

2 Is a Hard, Real-Time, Intelligent Agent possible?

The basic architecture of a hard, real-time, intelligent agent should consist of
three components: a set of sensors, a set of effectors, and a cognitive capability
which can compute actions on the environment from sensor perceptions in a
bounded time. More specifically, there must be a module that estimates the
current state of the environment (perception), a module of cognition which is in
charge of computing the set of actions allowing the agent to reach its goals, and a
module of action which acts on the environment. However, it is necessary for all
of these modules to have a bounded worst-case execution time (wcet), in order
to determine whether the system reacts according to its temporal restrictions.
It is usually easy to obtain the wcet of the methods employed in perception and
action modules. There exist classical analysis techniques in RTS that provide a
solution for this problem.

The main problem in this architecture is with the cognition module. This
module uses Al techniques as problem-solving methods to compute more intel-
ligent actions. In this case, it is difficult to extract the time required by this
module because it can either be unbounded or if bounded, its variability is very
high. When using AI methods, it is necessary to provide techniques that al-
low their response times to be bounded. These techniques are based on RTAIS
techniques [6].

With regards to the concept of agent, an agent may have a set of features
associated to it. These features add specific differences not available in more
classic software systems. When researchers talk about concepts like autonomy,
sociability, reactivity, proactivity, etc. they want to provide an agent its own
identity. It is not the goal of this paper to determine whether or not the ful-
fillment of any of these features is obligatory. Nor does this paper attempt to
determine the degree of fulfillment necessary which is still an open discussion.
Nevertheless, it is true that adding some of this features to an agent will affect
its architecture.

Some of the most important features of agency are the capacities: to work
autonomously, to adapt to the environment, to reason, to learn, to predict the
future effect of the performed actions and to predict the future behavior of the
environment. It is obvious that, if a specific software achieves any or all of these
features, it is due to an extra effort in its development process. Therefore, even
minimal fulfillment significantly complicates the implementation and function-
ality of an agent. If the agent must operate in a hard real-time environment, the
agent, construction complexity is increased enormously. Evidently, different en-
vironments require different software structures. Therefore, in an agent context,
it is necessary to define an appropriate structure in order to use agent features
in hard real-time environments.

RTS tasks have temporal restrictions which must be previously guaranteed.
This limitation in the system functionality mentioned above affects the features
of an agent that tries to be modeled as a RTS. For example, the time unbounded
problem-solving methods are a serious problem because their execution cannot
be temporal restricted. The real existence of a hard, real-time, intelligent agent
depends on the ability to overcome this problem and to be able to incorporate
the typical features of agency while maintaining the real-time behavior of the
system.

The hard real-time ARTIS agent architecture [1] incorporates all the neces-
sary aspects that the agency features provide to a software system, but adapted
to hard real-time environments. This architecture includes techniques of RTAIS,
which overcomes the problem. This approach starts from the basic real-time ar-
chitecture presented above, and it guarantees reacting on the environment in a
dynamic and flexible way. The ARTIS agent architecture guarantees an agent
response that satisfies all the critical temporal restrictions of the system and it
tries to always obtain the best answer for the current environment status. This
is due to its capacities for problem-solving, adaptability and proactivity which
have been added to the architecture.

3 ARTIS Agent: A Hard, Real-Time, Intelligent Agent

This point presents an agent architecture, called ARTIS Agent (AA) architec-
ture, for hard real-time environments. In accordance with existing agent archi-
tectures [18], the AA architecture could be labelled as a vertical-layered, hybrid
architecture with added extensions to work in a hard real-time environment [1].

One of the main features of the AA architecture is its hard real-time behav-
ior. It guarantees the execution of the entire system’s specification by means
of an off-line analysis of the specification. This analysis is based on well-known
predictability analysis techniques in the RTS community [5].

The off-line analysis only ensures the schedulability of real-time tasks. How-
ever, it does not force the task sequence execution. The AA decides the next task
to be executed at run-time, allowing it to adapt itself to environment changes,
and to take advantage of the tasks using less time than their wcet.

The AA reasoning process can be divided into two stages. The first one is a
mandatory time-bounded phase. It obtains an initial result of acceptable quality.
After that, if there is available time left (also called slack time), the AA may use
this time for the second reasoning stage. This is an optional stage and it does
not guarantee a response. It usually produces a higher quality result through
intelligent, utility-based, problem-solving methods.

3.1 ARTIS Agent Architecture

The architecture of an AA can be viewed from two different perspectives: the
user model (high-level model) and the system model (low-level model) [1]. The
user model offers the developer’s view of the architecture, while the system model
is the execution framework used to construct the final executable version of the
agent.

From the user model point of view, the AA architecture is an extension of
the blackboard model [12] which is adapted to work in hard real-time environ-
ments. It is formed from the following elements:

— A set of sensors and effectors to be able to interact with the environment.
Perception and action processes are time-bounded.

— A set of in-agents that models the AA behavior. The main reason to split
the whole problem-solving method into smaller entities is to provide an ab-
straction which organizes the problem-solving knowledge in a modular and
gradual way.

Each in-agent periodically performs a specific task. An in-agent is also an
agent according to the Russell’s agent definition [14]. Each in-agent has to
solve a particular subproblem, but all the in-agents of a particular AA co-
operate to control the entire problem, and an in-agent may use information
provided by other in-agents.

Depending on the temporal restrictions and the ”intelligence” used in its
problem-solving method, in-agents can be classified into critics and acritics.
A critic in-agent is characterized by a period and a deadline. The available
time for the in-agent to obtain a valid response is bounded. It must guarantee
a basic response to the current environment situation. It is formed by two
layers (see Figure 1): the reflex layer and the real-time deliberative layer.
The first one assures a minimal quality response and the second one tries to
improve this response. The reflex layer of all the in-agents make up the AA
mandatory phase. On the other hand, the real-time deliberative layers form

the optional phase. An acritic in-agent only has the real-time deliberative
layer.

— A set of beliefs comprising a world model (with all the domain knowledge
which is relevant to the agent) and the internal state. This set is stored in a
frame-based blackboard.

— A control module that is responsible for the real-time execution of the
in-agents that belong to the AA. The temporal requirements of the two in-
agent layers (reflex and deliberative) are different. Thus, the control module
must employ different execution criteria for each one.

Perception) Action)

in-agent

control module

reflex server
deliberative server

ARTIS AGENT

Fig.1. ARTIS Agent architecture

The system model provides a software architecture for the AA. The main
features of this model are [5]:

— Off-line schedulability analysis.

— Task Model that guarantees the critical temporal restrictions of the environ-
ment.

— Slack extraction method to on-line calculate the available time for executing
the real-time deliberative layer.

— Set of extensions to the Real-Time Operating System incorporating features
for managing real-time capabilities.

There is a toolkit, called InSiDE [15], which automatically converts the user
model to the system model [5]. The result is an executable AA.

| |
in-agent a - i i
| | |
|
in-agent b ! -
|
|
| |
slack time

Fig. 2. AA execution timing diagram

Figure 2 shows a possible execution stage of an AA by a timing diagram.
In this example, the AA is comprised by two in-agents (a and b). Black boxes

represent the processor time intervals assigned to the in-agent reflex layer exe-
cution. Between these executions there exists available time (white boxes). This
time can be used by the AA in order to improve its responses. One of the tasks
of the control module is the management of this slack time. It will allocate this
time among the real-time deliberative layers of the in-agents.

The integration of intelligence in an AA lies in the effective management of
the slack time by the control module. So, the rest of the paper explains this
module in detail.

3.2 Control Module: intelligence for RTA

The control module of an AA is the component in charge of controlling how and
when the different components of the AA are executed. According to the clas-
sical structure of a traditional blackboard system, it corresponds to the control
module of systems of this kind.

The utility of the AA control module is to guarantee that the agent always
reacts to the environment and that this response is the best possible result
according to the slack time and the knowledge that the agent has available.
Therefore, an AA is an agent with a reactive level which is always guaranteed.
This level provides a first time-bounded response, but this response probably
is not the best one. Moreover, the AA has a second level, with a deliberative
behavior. The main goal of this second level is to provide a better response than
the reactive one. The execution of this last level is conditioned by the available
time that the agent has to run this level. Another condition for executing the
second level is that the agent considers it appropriate depending on the real
situation.

Therefore, the control module of an AA is divided in two submodules (that
communicate through events): the reflex server and the deliberative server.

— Reflex server (RS) This module is in charge of controlling the execution of
reactive components, that is, the components with critical temporal restric-
tions. Due to these restrictions, it is integrated within a Real-Time Operating
System (RTOS)! [17]. It includes the First Level Scheduler (FLS) that must
schedule the execution of all these components, in order to guarantee their
temporal restrictions. This scheduler is implemented according to a common
RTS scheduling policy, a Fixed-Priority, Pre-emptive Scheduling Policy.
Once the execution of the critical parts is assured, there may be free intervals
between the execution of these critical parts. These slack times (calculated
using an algorithm based on the Dynamic Slack Stealing algorithm [3]) can
be employed by the second submodule of the control module in order to do
different functions, the goal of which is to refine the reactive response and
to improve its quality.

This module carries out the following functions to accomplish its purpose:
e To schedule the execution of all in-agents with critical temporal restric-
tions. This process must guarantee the fulfillment of these restrictions.

! The current version of the AA architecture uses RT-Linux as its RTOS

o To cede the agent control to the DS during the system idle time.

e To inform the deliberative server of the execution state of the in-agent
reflex part and the time it has available to use. This slack time is calcu-
lated just before informing the DS to take into account the tasks using
less time than their wcet.

— Deliberative server (DS) This module is in charge of controlling the exe-
cution of the deliberative components. Therefore, this server is the intelligent
element of the control module, but with temporal restrictions.

4 Deliberative Server

As it has been declared in the previous point, this is the AA control module part
in charge of managing the intelligence of this agent.

Its main purposes are: to improve the quality of the agent responses, to adapt
the agent to important environment changes and to pursue its own objectives.
In order to achieve its goals, some functionalities, that are described in section
4.2, have been implemented.

4.1 Internal Structure

It can be said that the DS is implemented following a control blackboard ar-
chitecture [8]. This architecture is an event-driven module. More specifically, it
implements a variation of the so-called ”satisfacing cycle” [8] as described in
figure 3:

Forever do {

Trigger();
EM
Condition Testing ();
Rating();
schedAg = Schedule (); SLS

Interpret (schedAg);

}

Fig. 3. Relation between control cycle and DS modules

The DS cycle has been adapted to be used with temporal restrictions and
bounded execution time. This is due to the DS is executed in slack time (see
Figure 2).

Moreover, the DS control cycle has been implemented through two mod-
ules, the Event Manager (EM) and the Second Level Scheduler (SLS). The first
one receives significant events and reacts to them. It comprises the trigger and
condition testing phases of the ”satisfacing cycle”. The second one is in charge

of scheduling the use of the slack time and comprises the rating, schedule and
interpret phases.

In this way, when the DS begins to work, the Event Manager looks for new
events and takes the appropriate measures to react to them (trigger phase). The
events are sorted by their contribution to system quality to be able to respond
to the most appropriate event at each moment.

Next, it checks what is available to be scheduled in its available time (con-
dition testing phase). When the Event Manager ends, it is time for the SLS to
work. First of all, it rates all the deliberative in-agent parts that it has avail-
able for scheduling (rating phase). After this, it makes a plan for the slack time
that it has available (schedule phase). Lastly, it makes the execution of this plan
possible (interpret phase).

At this point, an overview of the control schema can be made. It follows a
schema with two schedulers (FLS and SLS) as can be seen in Figure 4a. The
FLS schedules the reflex parts of the in-agents assuring the fulfillment of hard
temporal restrictions. In the slack time, it cedes the control to the DS, where
the SLS schedules the Real-Time Deliberative (RTD) parts of the in-agents.

Reflex R
Aftention Focus
Event Attention Degree

D
In-agent
Activate
Event Manager Deactivate
Control
SLS
Control T
In-Agent’s
deliberative part
T Reactivity
s Degree
Execution Plan
Reflex Server
RTOS

Fig.4. a) Two Schedulers Control Schema (left). b) Deliberative Server Interactions
(right)

The main purpose of the SLS is to decide what to execute to improve the
agent’s response. The decision may be to execute the optional part of a critic
in-agent, or to execute an acritic in-agent previously activated by the event
manager. To make this decision, the SLS has a set of scheduling policies with
different features which are appropriated for different situations. The available
scheduling policies [2] can be classified into two types: Greedy Policies (they
rate all the items in the agenda and choose one for execution) and Deliberative
Policies (they construct a plan with the sequence of items to execute). Both
types of scheduling policies has bounded planning time, that is controlled by the
RTOS.

The SLS fixes the maximum execution time available for each item it sends
to execution. This time will be the minimum between the item’s wcet and the

slack time still available to the SLS. If the item doesn’t end its execution before
this time, it is suspended and inserted back at the agenda so that it may be
resumed in the future.

4.2 Describing EM Functionalities

The two deliberative server modules and their interactions can be seen in Figure
4b. The main functionalities which are implemented in the Event Manager to
achieve the main goals of the DS are shown in this figure:

— To activate and to deactivate acritic in-agents: The EM may activate / de-
activate deliberative processes that are independent of the in-agents whose
reflex part has just been processed.

— To manage the Attention Degree: The DS must divide its execution time be-
tween its two modules. This time assignment does not have to be equitable.
In fact, one of the ways to make the agent adaptive is to control the per-
centage of execution time provided to event management. This percentage
is the Attention Degree and may be modified by the event manager. The
time assigned to the event manager allows it to receive all the events or only
some of them. This variation is gradual, when the extreme situations are the
following: all the events are attended (the deliberative server is totally fo-
cused on the environment) and no event is attended (the deliberative server
is totally focused on its own objectives).

— To manage the Attention Focus: The Event Manager may change the agent
attention focus. That is, the belief subset which updates will direct the de-
liberative process. Changes in this subset will produce the events that the
EM is interested in. This feature has two extreme situations: the EM is inter-
ested in the whole belief set, controlling all the modifications, and the EM is
interested in variations of only one belief (any other belief data modification
will be transparent for the DS).

— To change the SLS Policy: The EM will control the SLS policy to be used
by this scheduler. It will make a change when the environment state and
/ or schedule quality make it necessary. For instance, if the SLS policy is
a deliberative one, and there is very little execution time available, then it
seems appropriate to adopt a greedy SLS policy.

— To manage the Reactivity Degree: The Reactivity Degree is the percentage

of slack time dedicated to cognition processes. This parameter allows the
EM to control the slack time that it can use for its execution.
The usual working of an AA delays the execution of its actions as late as
possible. This behavior leaves the maximum time for the cognition process.
Nevertheless, sometimes it might be interesting to execute an action even if
there is slack time left. This feature has two extreme situations: all the slack
time may be used to deliberate (this is the default mode and the agent has
the lowest Reactivity Degree), and there is no cognition process (the agent
behaves as a reflex agent and it has the highest Reactivity Degree).

4.3 DS Goal Achievement

Through the use of this set of functionalities, the DS is responsible for the
fulfillment of almost all the AA agency features, as can be seen in the following
points.

— Improvement of the agent answer quality: The Reflex Server is in charge of
obtaining a low-quality first response from the AA (which is implemented
as the mandatory time-bounded phase). The DS is responsible for using the
available time to improve the quality of this response. This process is carried
out by controlling the AA reasoning capability at two levels:

e It decides at each moment what subject to reason about in the slack
time. Thus, it decides what to run from the active items stored in the
agenda (real-time deliberative layers of the critic in-agents and acritic
in-agents). These items are what really reason about the problem.

e Meta-reasoning: it decides when to change the SLS scheduling algorithm,
the reasoning process focus or the Attention Degree. This improves the
reasoning process and, thus, the agent response quality obtained through
this process.

— Adapting to important environment changes: The adaptability of the agent
is expressed in its ability to change dynamically. Actually, any functionality
change that the Event Manager triggers as a reaction to an event helps to
adapt the AA to new situations. For instance, if the agent is very focused on
the changes in the environment (the Attention Degree is very high) and the
event rate is also very high, a greedy scheduling policy should work better
than a deliberative one. If the SLS is working with a deliberative policy, the
EM would change it.

— Pursuing its own objectives: The Attention Focus allows the AA to focus its
reasoning process on different belief sets. Therefore, in some situations, the
AA is able to focus its deliberation on its own initiatives and to ”avoid” the
environment changes. This effect can be augmented by tuning the attention
degree to dedicate all the available time to the SLS.

5 Coclusions

The work presented in this paper shows how the AA architecture provides the
execution of intelligent components incorporating a control module. It is thanks
to this control module that agents developed with this architecture will add
agency features.

This architecture has been successfully applied to mobile robot control [15],
by means of a prototype running over RT-Linux. Further investigation is centered
on social aspects of the AA architecture, by extending the architecture in order
to develop real-time, multi-agent systems. This new feature will allow the AA
to offer services and to make them available to other agents through the control
module. New examples are considered in order to study this new behavior. More
specifically, a train traffic control system is being developed, where each train is
modeled as an AA.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

V. Botti, C. Carrascosa, V. Julian, and J. Soler. Modelling agents in hard real-time
environments. Proc. of the MAAMAW’99. LNCS, vol. 1647, pages 63-76, 1999.
V. Botti and L. Hernandez. Control in real-time multiagent systems. In Proceedings
of the Second Iberoamerican Workshop on DAI and MAS, pages 137-148, Toledo,
Spain, 1998. Garijo, F., Lemaitre, C. (Eds.).

R.I. Davis, K.W. Tindell, and A. Burns. Scheduling slack time in fixed priority
preemptive systems. In Proc. R-T Systems Symposium, North Carolina, pages
222-231. IEEE Comp. Society Press, 1993.

. T. Dean and M. Boddy. An analysis of time-dependent planning. Proceedings of

the seventh National Conference on Artificial Intelligence. St. Paul, Minessota,,
pages 49-54, 1988.

A. Garcia-Fornes, A. Terrasa, V. Botti, and A. Crespo. Analyzing the schedula-
bility of hard real-time artificial intelligence systems. EAAI pages 369-377, 1997.
A. Garvey and V. Lesser. A survey of research in deliberative real-time artificial
intelligence. The Journal of Real-Time Systems, 6:317-347, 1994.

John R. Graham. Real-Time Scheduling in Distributed Multi-agent Systems. PhD
thesis, Dept. of computer and Information Science. University of Delaware, 2001.

B. Hayes-Roth, R. Washington, D. Ash, A. Collinot, A. Vina, and A. Seiver.
Guardian: A prototype intensive-care monitoring agent. Al in Medicine, 4:165—185,
1992.

A. E. Howe, D. M. Hart, , and P. R. Cohen. Addressing real-time constraints in the
design of autonomous agents. The Journal of Real-Time Systems, 2:81-97, 1990.

F. Ingrand, M. P. Georgeff, and A. Rao. An architecture for real-time reasoning
and system control. IEEE Ezxpert, pages 34-44, December 1992.

D. Musliner, E. Durfee, and K. Shin. Circa: a cooperative intelligent real-time
control architecture. IEEE Transactions on Systems, Man and Cybernetics, 23(6),
1993.

P. Nii. Blackboard systems: The blackboard model of problem solving and the
evolution of blackboard architectures. The AI Magazine, pages 38-53, Summer
1986.

M. Occello and Y. Demazeau. Modelling decision making systems using agents
satisfying real time constraints. IFAC Proceedings of 3rd IFAC Symposium on
Intelligent Autonomous Vehicles, 1:51-56, 1998.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall International Editions, 1995.

J. Soler, V. Julian, C. Carrascosa, and V. Botti. Applying the artis agent archi-
tecture to mobile robot control. In Proceedings of IBERAMIA’2000. Atibaia, Sao
Paulo, Brasil, volume I, pages 359— 368. Springer Verlag, 2000.

J.A. Stankovic. Misconceptions about real-time computing. IEEE Computer,
12(10):10-19, 1988.

A. Terrasa, A. Garca-Fornes, and V. Botti. Flexible real-time linux. Real-Time
Systems Journal, 2:149-170, 2002.

M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115-152, 1995.

