
On the inclusion of temporal capabilities in a
real-world POCL planner: A successful story?

Luis Castillo, Juan Fdez-Olivares, and Antonio González

Departamento de Ciencias de la Computación e Inteligencia Artificial
E.T.S. Ingenieŕıa Informática. Universidad de Granada, 18071 Granada, SPAIN.

{L.Castillo,faro,A.Gonzalez}@decsai.ugr.es

1 Introduction

Artificial Intelligence planning community is shifting its interest into more re-
alistic domains able to successfully apply these technologies to solve real world
problems. Requirements such as more expressiveness of knowledge representa-
tions or a greater efficiency of planning algorithms are some of the most common
arguments in this direction. Following the line of achieving more expressiveness,
this paper describes a step in this direction and tells a story on the successful
inclusion of PDDL 2.1 level 3 [6] temporal capabilities into a non-temporal, par-
tial order, causal link-based planner (POCL) called MACHINE which has been
used to solve real-world manufacturing problems [1, 2]. Problems on the model-
ing of time and the control of concurrency are addressed providing some extra
functionality that ends to be more realistic than PDDL 2.1.

A question that arises during the definition of these temporal capabilities is:
“Is the definition of a temporal ontology necessary to build a temporal planner?”.
This paper, following others such as [11, 10, 3], shows that a temporal planner can
be easily built on top of a POCL planner only by adding some temporal managing
capability and also that POCL planning can be a more intuitive platform to
reach a temporal planning architecture than GraphPlan-based platforms [12, 7]
or state based-planning [9, 5].

2 An overview of MACHINE

MACHINE is a POCL refinement planner1 [2]. Its domains are composed of agents
and every agent has a set of available actions. MACHINE is based on a closed
change assumption, that is, there are no exogenous effects and agents are the
only entities able to change the environment. The behavior of every agent is
described by means of a Finite State Automaton (FSA) so that every action
implies both a change of state in the agent and some effects in the environment
(see Figure 1). Both the change of state and the effects are considered to be
instantaneous.

Unlike most of the models of action, in which the end of an action occurs
somewhere between the execution of two consecutive actions of the same agent
? This work has been supported by the CICYT under project TAP99-0535-C02-1.
1 It does not support conditional effects, numeric values nor metric time

VALVE TANK−2TANK−1 PUMP

SHUT

Close Valve

Open Valve

OPEN OFFON

Turn Pump off

Turn pump on

(:agent pump
(:states (off on))
(:action pump-on
:parameters (?CHEM)
:pre-condition

(and (contains ?CHEM tank-1)
(state pump off))

:sim-condition
(open-flow tank-1 tank-2)

:effects
(and (not (contains ?CHEM tank-1))

(not (state pump off))
(contains ?CHEM tank-2)
(state pump on)))

(:action pump-off
:parameters nil
:pre-condition

(state pump on)
:sim-condition nil
:effects

(and (not (state pump on))
(state pump off))))

(:agent valve
(:states (shut open))
(:action open-valve
:parameters nil
:pre-condition

(state valve shut)
:sim-condition

nil
:effects

(and (not (state valve shut))
(open-flow tank-1 tank-2)
(state valve open)))

(:action close-valve
:parameters

nil
:pre-condition

(state valve open)
:sim-condition

nil
:effects

(and (not (state valve open))
(not (open-flow tank-1 tank-2))
(state valve shut))))

Fig. 1. A simple domain showing a valve and a pump to transport the content of tank-1
into tank-2 and its description

(sometimes it is a timed event, sometimes it is given by the achievement of all
of the effects of the action), MACHINE is based on the Newtonian assumption
that once an action has started its execution, it will continue so until some other
planned event interrupts it. In this case, this ending event can only be either a
consecutive action in the FSA representation or the end of the plan.

action1

End(action1)

action2

action1 action2 = End(action1)

Following this assumption, actions are easily considered like intervals: the
qualitative period of time between an action and either the following action of
the same agent or the end of the plan. For example, a plan to transport the con-
tent of tank-1 into tank-2 could be the one shown in the chronogram of Figure 2.
This plan has four actions whose intervals of execution are [Open Valve, Close
Valve = End(Open Valve)], [Close Valve, END = End(Close valve)], [Pump
On, Pump Off] and [Pump Off, END]. This leads to a very easy interpretation
of concurrency: two actions execute concurrently if their intervals of execution
may overlap. For example, actions [Open Valve, Close Valve] and [Pump On,
Pump Off] are concurrent. The idea of intervals of execution defined as intervals
of actions of the same agent, and the possibility of these intervals to overlap,
provide the basis of refinement operations like subgoal achievement and flaw
detection and solving.

Actions can have pre-conditions, i.e., conditions which must hold at the be-
ginning of the action, like PDDL preconditions [6], and simultaneous conditions

STATE
VALVE

STATE
PUMP

OPEN
FLOW

WATER
TANK−1

TANK−2

FALSE

ON

OFF

ON

OFF

TRUE

START PUMP PUMP CLOSE ENDOPEN
ON OFF VALVEVALVE

Fig. 2. The chronogram of a simple plan

(see Figure 1), i.e. conditions which must hold during its whole interval of ex-
ecution, like PDDL level 3 invariant conditions. The achievement of these two
types of conditions produces two different types of causal links, a previous causal
link from the producer action [13] until the consumer action; or a simultaneous
causal link from the producer action until the end of the consumer action [2].
For example, the simultaneous condition (open-flow tank-1 tank2) of action
Pump On is satisfied by action Open Valve and protected during the interval
[Open Valve, Pump Off=End(Pump On)].

There are two different types of flaws that MACHINE is able to detect and
solve. On the one hand, classic threats [13] are redefined to cope with these
intervals of execution and these two types of causal links. Then, a threat appears
when the interval of actions of some causal link may overlap with the interval
of execution of some action that deletes the literal of the causal link. In this
case, usual methods of promotion and demotion are used to solve the threat but
taking into account the starting and ending points of both actions and causal
links. On the other hand, MACHINE can handle interferences. An interference
occurs when the intervals of execution of two actions overlap and both actions
have some opposite effect, say p and not p. In this case promotion and demotion
are used as explained before.

In summary, MACHINE is a non-temporal POCL planner that has been used
to solve realistic problems in manufacturing domains, whose semantics is based
on intervals of execution, defined as intervals between actions, thanks to the
expressiveness provided by the FSA representation of agents. These intervals of
actions are the basis of goal satisfaction and flaw detection and solving. In the
following, the paper presents the extension of MACHINE to handle metric time,
PDDL2.1 durative actions [6] and some more features.

3 Temporal aspects of the domain

Although MACHINE is able to solve general problems, it has been widely used to
solve manufacturing problems [1, 2], mainly those in which the transition from
one action to another in the plan depends exclusively on the satisfaction of a
set of conditions. However, since it is not able to represent metric temporal
relations, it is not either able to solve problems which require some type of
metric temporization in the plan, such that some real-time processes or time
critical applications. In order to solve this new type of problems, and given that
the model of action and the planning architecture of MACHINE is quite specific,
the main question was is: should we define a new temporal planning architecture

or reuse the existing one by adding temporal capabilities? The right choice is
the last one. The reason of this is that the most important features of one of the
reference documents in temporal domains (PDDL 2.1 level 3 [6]), like durative
actions and invariant conditions, are already supported by the non-temporal
model of action of MACHINE, thus only some sensitive extensions are needed to
cope with the metric temporal features of domains.

The first issue is that, given that a domain is represented as a set of agents
whose operation is defined by means of a FSA, one may assume that changes of
state in these automata are instantaneous since they represent internal states.
However, the remaining effects on the environment do not have to be instan-
taneous, that is, they might have some delay. During this delay, the effect can
be considered to be undefined, so no continuous effects are going to be repre-
sented. This fact cannot be modeled explicitly in PDDL 2.1 level 3 since effects
occurs instantaneously at the beginning or at the end of a durative action but it
will have some important consequences in the metric interleaving of actions in a
temporal plan. Following this assumption about delayed effects, once a producer
action satisfies a subgoal of a consumer action, the consumer action only has to
wait at least the delay needed for the producer action to achieve the effect. This
would allow to introduce temporal restrictions between producers and consumers
as a continuous, not necessarily restricted to the start or end points of the pro-
ducer like in PDDL 2.1, thus achieving a more realistic interleaving. In addition,
it must be taken into account that this will introduce uncertainty in the model,
that is, once all of the conditions of a consumer action have been achieved at
time t, the consumer action can be executed at some arbitrary time point greater
than or equal to t whenever it did not interfere with the rest of the plan.

Another issue that has to be considered is that, although continuous change
is not explicitly considered, there are actions whose effects are somehow accu-
mulative, and that they must have exactly a given duration for they to achieve
exactly the desired effect. This is the case of motion actions, including trans-
portation actions, or the pumping of some fluid like in Figure 1. In this case
there must be a restriction on the expected duration of an action, that is, in the
interval [action, End(action)]. In contrast to this, non-accumulative actions
do not need to have a fixed duration.

STATE
VALVE

STATE
PUMP

OPEN
FLOW

WATER
TANK−1

TANK−2

FALSE

ON

OFF

ON

OFF

TRUE

START PUMP PUMP CLOSE ENDOPEN
ON OFF VALVEVALVE

Fig. 3. A more realistic chronogram than the one shown in Figure 2

Let see an example. Figure 3 shows a more realistic view of plan in Figure 2.
The duration of the interval [Open Valve, Pump On] is the delay needed to open
the valve, but it can be greater. The duration of the interval [Pump On, Pump
Off] must be exactly the time needed to transport the content of tank-1 into

tank-2, no more, no less. The duration of interval [Open Valve, Close Valve]
is undefined but restricted, given that it contains a fixed duration interval.

Finally, the specification of some problems might contain subgoals with dead-
lines, that is, subgoals that must be achieved exactly at a given time point in the
plan. This is very important in some time critical domains such manufacturing
or transportations, although it is not explicitly described in PDDL 2.1. These
are the temporal aspects of the domain that need to be modeled in the new
version of MACHINE called MACHINET . Next section explains how.

4 PDDL 2.1 durative actions and more

The main decision that has to be made is the choice of the underlying structure
to represent a temporal order relation given the temporal restrictions that need
to be represented. In this case, simple temporal networks [4, 11] are a very good
choice.

4.1 Simple temporal networks

A simple temporal network [4] is a directed graph where vertices are time points
and every arc represents a single temporal constraint defined on two time points.

+oo

+oo
START 3

1 2

4 END

[10, 20]

[30, 40]

[50, 50]

[0,)

[60, 70]

[0,)

They have been chosen because they have the following features: they allow
to represent and propagate temporal relations in a partially ordered structure,
relative or absolute constraints can be posted, flexible constraints can also be
posted between time points in the form [tmin, tmax] meaning that the distance
between two time points is not exactly defined, but restricted by lower and
upper bounds, exact temporal constraints can also be posted in the form [t, t],
partially known relations can be represented in the form [t,+∞), successive
postings of constraints between two time points are easily solved by intersecting
the constraints. These networks also provide all of the functionality needed for
a POCL planner, that is, consistency checking, question answering in the form
“is time point 1 ≤ time point 2?” or “do intervals [timepoint1, timepoint2] and
[timepoint3, timepoint4] overlap?” and propagation of constraints in polynomial
time.

Time points could be used to represent start and end points of both actions
and fluents in a plan. However this can lead to a slow propagation process in
large plans. Given the closed change assumption of MACHINET , time points can be
used to represent actions but taking into account that every temporal constraint
between actions strongly depends on the existing delays of effects. This can
achieve the same expressiveness but implies a much simpler network and a lower
computational effort to propagate constraints.

4.2 A representation of time

The temporal aspects of the domain presented above are modelled in the follow-
ing way. Every effect of an action will be a temporally annotated literal of the
form (literal, delay) to represent the delay associated to this effect expressed
in time units. Fixed duration of accumulative-type actions are explicitly repre-
sented with a numeric value in a new argument of the action. Actions that do
not have a predefined duration will have an +∞ value (see Figure 4). Deadline
goals will also be represented as temporally annotated literals.

(:agent pump
(:states (off on))
(:action pump-on
:parameters (?CHEM)
:max-duration 120
:pre-condition

(and (contains ?CHEM tank-1)
(state pump off))

:sim-condition
(open-flow tank-1 tank-2)

:effects
(and ((not (contains ?CHEM tank-1)) 120)

((not (state pump off)) 0)
((contains ?CHEM tank-2) 120)
((state pump on) 0)))

...

(:agent valve
(:states (shut open))
(:action open-valve
:parameters nil
:max-duration *POS-INF*
:pre-condition

(state valve shut)
:sim-condition

nil
:effects

(and ((not (state valve shut)) 0)
((open-flow tank-1 tank-2) 10)
((state valve open) 0)))

...

Fig. 4. A temporal representation of the domain in Figure 1

4.3 Goal satisfaction and causal links

In addition to the goal satisfaction and causal link definition processes of MA-

CHINE, the following extensions have been added to MACHINET .

– Every time an action a is used as producer of a temporally annotated effect
(l, δl) for a subgoal of a consumer action b, a restriction [δl,+∞) is added to
the simple temporal network between the time points associated to a and b
and propagated accordingly.

– Every action a with a fixed duration t 6= ∞ adds a new constraint of the
form [t, t] between the time points associated to a and End(a). There may
be actions with no fixed duration, in this case, for every such action a, a con-
straint is added to specify that this action must take at least the time needed
to achieve its effects, that is, a constraint of the form [maxl∈effects(a)δl,+∞)
is added between time points of a and End(a).

– For every deadline goal, as a temporally annotated goal (g, tg), meaning that
goal g has to be achieved exactly at time tg, which has been solved by an
action a with a temporally annotated effect (l, δl) a constraint is added of
the form [tg − δl, tg − δl] between the time points of action START and a,
given that time point of action START has an absolute time zero2.

2 Note that in this model there is no slack in the satisfaction of deadline goals since,
by their own nature, they must be satisfied exactly at a fixed time point.

These extensions give temporal interleaving capabilities to the problem solv-
ing process of MACHINET . Even more, two of the most important features of
PDDL 2.1 level 3 durative actions are easily achieved. On the one hand, the
FSA representation of agents provide the underlying knowledge to easily define
start and end points for intervals of actions without requiring the insertion of
dummy actions or the decomposition of the action into two different time points
like in some PDDL 2.1 level 3 based planners [7, 3, 10, 8]. Given an action ai,
an action aj = End(ai) can also be included in a plan and the duration of ai
will be the distance in the simple temporal network between time points asso-
ciated to ai and aj . This distance can be fixed ([t, t]), restricted ([tmin, tmax])
or undefined ([t,+∞)). Therefore, every action maintains its own preconditions,
without the need to distinguish between start conditions or end conditions. This
is particularly important for actions without a fixed duration time.

On the other hand, invariant conditions, i.e., conditions which must hold
during the interval of execution of an action are already represented and satisfied
like simultaneous causal links in MACHINET (see Section 2). The inclusion of a
metric time only gives a numeric value to these intervals. This is particularly
easy in POCL planners like MACHINET or TANDOR[10] or [3] thanks to the use of
causal links and a continuous time-line available for promotions or demotions,
but it is more difficult to represent in GraphPlan-based planners [7, 12] where
some extra mechanisms need to be added to account for the preservation of a
condition through several layers of the planning graph, or state-based planners [9,
5] where the time-advancing procedure has to be modified with both additional
data structures (set of persistent conditions and/or their associated actions) and
some modifications of the time advancing procedure to handle these structures.

In addition to this, MACHINET provide an extra functionality regarding the
metric relations between actions. The use of the delay of effects to introduce tem-
poral constraints between the producer and the consumer, as explained before,
is also used in SAPA [5] and it allows a continuous and more precise temporal
ordering of producer and consumer actions than in PDDL 2.1, where consumer
actions must be ordered only after the start or end time points of a durative
action depending on whether the effect produced is at start or at end. For ex-
ample, given the use of the producer action Open Valve and its delayed effect
((open-flow tank-1 tank-2) 10) which takes 10 time units, to solve the same
subgoal of the consumer action Pump On (see Figure 4) would add a temporal
constraint of [10,+∞) between Open Valve and Pump On. This also has some
important consequences on the treatment of harmful interleavings of actions.

4.4 Concurrent actions and flaws

The notion of concurrency in MACHINET maintains the meaning of interleaving
intervals as explained before but now, it has a metric evaluation. For metric
positive concurrency, there is not much to add, but there is something new
about harmful concurrencies, threats and interferences. These cases are com-
monly called mutex actions in PDDL 2.1. In MACHINET they are detected fol-
lowing the same mechanism, that is, checking for possible overlapings of intervals
of actions (two intervals of execution in the case of interferences and a causal link

and an interval of execution in the case of threats) and they have qualitatively
different solutions.

not effect1

effect1
causal link

THREAT

a1

a3

a2

a4 = End(a3)
not effect1

effect1

INTERFERENCE

a1

a3

a2 = End(a1)

a4 = End(a3)

In the case of interferences, promotion and demotion are applied taken into
account the delays of the interfering effects in such a way. Say that action a1
with the delayed effect (l, δ1) interferes with action a3 with the delayed ef-
fect ((not l), δ2). Then promotion is applied by adding the following constraint
[δ1,+∞) from a1 to a3. Demotion consist in adding [δ2,+∞) between a3 and
a1.

In the case of threats, promotion and demotion are similar. Say that ac-
tion a3 with the delayed effect ((not l), δ) interferes with the casual link (pre-
vious or simultaneous) from a1 to a2. Then promotion adds the constraint
[maxl∈effects(a2)δl,+∞) between a2 and a3. Demotion adds the constraint [δ,+∞)
between action a3 and action a1.

In both cases it should be clear that mentioned constrains are “added” to
the existing constraints between the involved actions, intersected and propagated
accordingly through the simple temporal network. If one of this operations causes
any inconsistency, it will be detected by the consistency checking procedure of
the network [4]. In any case, this method for detecting and solving harmful
concurrencies is more adequate for real-world or time critical problems than the
more restrictive ones proposed in PDDL 2.1 and TGP [12] since conflicts do not
have to appear necessarily at start or end points, but also in any intermediate
point.

4.5 Temporal Plans

Finally, plans will be a set of actions distributed on a simple temporal network
such that every action has an annotated time at which its execution is expected
(it is given by the existing constraint between the action itself and the action
START) and the rest of constraints between actions are the result of constraint
posting during the planning process as described before. The execution time for
every action can be an exact time point of the form [t, t], a bounded time interval
[tmin, tmax] or an undefined interval [t,+∞) (See Figure 5).

This temporal plan can be used in two ways. The first one is to know the exact
time point at which an action should be launched. In this case, the algorithm for
solutions extraction for simple temporal networks [4] has to be used since there
may be several possible solutions. The second way is to monitor the execution
of the plan. A temporal plan can be used to check if the execution of any action
has been delayed for some reason (faults, unexpected delays, etc) and whether
the existing delay is acceptable or not in order to continue the execution of the
plan or abort. In this case, since every action has a time interval in which its
execution is expected to start, if the delay is still in the correct bounds then it
is acceptable, otherwise it is not.

4.6 Other issues

This temporal planning framework can also support several additional features.
Firstly, makespans for the temporal plan can be very easily achieved (see Figure
5) by adding a constraint of the form [makespanmin,makespanmax] between
actions START and END at the beginning of the planning process (in this
case, too long plans will produce an inconsistency with respect to this constraint,
detected by the consistency checking mechanism and rejected). MACHINET could
also be used to optimize the final makespan just by including the duration of
the plan in the heuristic evaluation function, although this feature needs further
study.

[0, 0]

START

[141,160]

END

[11, 30]

PUMP ON

[131,150]

PUMP OFF

[1, 20]

OPEN VALVE

[131,150]

CLOSE VALVE

Fig. 5. A temporal plan for the domain in Figure 4 taking into account a maximum
makespan of 160 time units

MACHINET can also be used for more general domains, not only manufacturing
systems, with the only requirements of representing agents by means of a FSA.
In this case, Figure 6 shows the representation of the very well known zeno travel
problem from the international planning competition held at AIPS’023 in terms
of FSA, and a portion of the domain.

DEBARKINGNOBOARDBOARDING

Open−Debark

Close−Debark

Close−Board

Open−Board

REFUELING

Refuel

Stop−Refuel

NOREFUELGROUND

Stop

Fly

FLYING

Zoom

(:agent plane1
(:states (ground flying norefuel refueling

noboard boarding debarking))
(:action fly
:parameters (?city1 ?city2)
:max-duration 180
:pre-condition

(and (plane-at plane1 ?city1)
(refueled plane1)
(state plane1 ground))

:sim-condition
nil

:effects
(and ((not (plane-at plane1 ?city1)) 0)

((not (state plane1 ground)) 0)
((not (refueled plane1)) 180)
((plane-at plane1 ?city2) 180)
((state plane1 flying) 0)))

...

...
(:action refuel
:parameters nil
:max-duration 73
:pre-condition

(state plane1 norefueling)
:sim-condition

(state plane1 ground)
:effects

(and ((not (state plane1 norefuel)) 0)
((refueled plane1) 73)
((state plane1 refueling) 0)))

...

Fig. 6. The zeno travel domain expressed in terms of MACHINET

3 http://www.dur.ac.uk/d.p.long/competition.html

5 Conclusions

This paper has been intended to show that POCL planning is still a valid plat-
form to face real world problems and that it is a very expressive paradigm
to efficiently support temporal planning problems, when it is complemented
with some temporal representation and reasoning capabilities. In addition, it
has shown that a non-temporal model of action, such as that of MACHINE, can
be a very good start point to include some of the most important features of
PDDL 2.1 level 3 durative actions and even some additional interesting features.

References

1. L. Castillo, J. Fdez-Olivares, and A. González. A three-level knowledge based
system for the generation of live and safe petri nets for manufacturing systems.
Journal of Intelligent Manufacturing, 11(6):559–572, 2000.

2. L. Castillo, J. Fdez-Olivares, and A. González. Mixing expresiveness and efficiency
in a manufacturing planner. Journal of Experimental and Theoretical Artificial
Intelligence, 13:141–162, 2001.

3. A. Coddington. Handling durative actions in a continuous planning framework. In
AIPS’02 Workshop on Planning for Temporal Domains, pages 33–40, 2002.

4. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intel-
ligence, 49:61–95, 1991.

5. M. Do and S. Kambhampati. SAPA: a domain-independent heuristic metric tem-
poral planner. In European Conference on Planning, pages 109–120, 2001.

6. M. Fox and D. Long. PDDl2-1: an extension to PDDL t for expressing temporal
planning domains. Technical report, University of Durham, UK, 2001.

7. M. Fox and D. Long. Fast temporal plannig in a Graphplan framework. In AIPS’02
Workshop on Planning for Temporal Domains, pages 9–17, 2002.

8. A. Garrido, E. Onaind́ıa, and F. Barber. Time-optimal planning in temporal prob-
lems. In European Conference on Planning, pages 397–502, 2001.

9. P. Haslum and H. Geffner. Heuristic time with time and resources. In European
Conference on Planning, pages 121–132, 2001.

10. E. Marzal, E. Onaind́ıa, and L. Ssebastiá. An incremental temporal partial-order
planner. In AIPS’02 Workshop on planning for temporal domains, pages 26–32,
2002.

11. E. Rutten and J. Hertzberz. Temporal planner = nonlinear planner + time map
manager. Artificial Intelligence Communications, 6:18–26, 1993.

12. D.E. Smith and D.S. Weld. Temporal planning with mutual exclusion reasoning.
In IJCAI’99, pages 326–337, 1999.

13. D. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27–
61, 1994.

