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Abstract. Application prototyping is a technique widely used both to

validate user requirements and to verify certain application functionality.

These tasks usually require the population of the underlying data struc-

tures with sampling data that, additionally, may need to stick to certain

restrictions. Although some existing approaches have already automated

this population task by means of random data generation, the lack of

semantic meaning of the resulting structures may interfere both in the

user validation and in the designer veri�cation task.

In order to solve this problem and improve the intuitiveness of the result-

ing prototypes, this paper presents a population system that, departing

from the information contained in a UML-compliant Domain Conceptual

Model, applies Information Extraction techniques to compile meaning-

ful information sets from texts available through Internet. The system

is based on the semantic information extracted from the EWN lexical

resource and includes, among other features, a named entity (NE) recog-

nition system and an ontology that speed up the prototyping process

and improve the quality of the sampling data.

1 Introduction

Nowadays, both practitioners and researchers avow the necessity of conceptual

models to design and deploy high-quality non-trivial applications. Following this

trend, well known Software Engineering practices, usually based on the de facto

standard in industry UML [12], are being adopted. However, the yet insuÆcient

number of support for automatic tasks that ease the implementation and testing

of the corresponding software artifacts is diminishing the potential bene�ts of

such models. We agree with [1] in that Advanced Software Production Envi-

ronments that include Model Based Code Generation and Testing Techniques

that partially automate the development process are crucial for organizations to

maximize the results of applying conceptual modeling concepts.
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In this sense, e�orts made towards such automation have already showed

some interesting results. Most current software development processes already

include semi-automatic translation of concepts among models, thus promoting

the reuse of design speci�cations and avoiding inconsistencies. Closer to our ob-

jective, e�orts in the Requirement Analysis �eld are being made to generate

each time more re�ned conceptual models out of textual descriptions. In fact,

we believe that textual analysis is bound to pay an ever increasing role in this

automated process, as will be explained in Section 3. This paper presents one of

its application possibilities: the population of application prototypes with sam-

pling data that provide meaningful content on which to test and get stakeholder

feedback.

2 Class Diagram de�nition and constraints

A Class Diagram (CD) is a graphic view of the static structural model of the

system [12]. Being a milestone in the conceptual modeling process, it includes

domain-related textual information in the form of descriptors (text strings) asso-

ciated to each of its elements. Due to its nature, the CD constitutes an invaluable

source for domain knowledge: the UML notation helps not only in the concep-

tual understanding of the domain, but also provides an ontology over the domain

vocabulary. In order to illustrate the whole sampling data extraction process, a

small example is going to be employed all along the paper: a Hotel Reserva-

tion System. The UML CD corresponding to such system can be observed in

Fig. 1. In this system, and as a basic explanation (for reasons of brevity) let's

assume each hotel has a set of Rooms (Habitaci�on) which can be of di�erent

Types (TipoHabitaci�on). Rooms can be booked by Clients (Cliente). For each

Booking (Reserva) the system keeps track of the Services (Servicio) provided

(laundry, drinks, etc), in order to Charge (Cargo) them to the client. On client

departure, an Invoice (Factura), which may include more than one Booking, is

generated and the method of Payment (MedioPago) is registered. In this dia-

gram, all classes revolve around a class decorated with a standard singleton UML

stereotype. UML Stereotypes are a very powerful standard extension mechanism

that provide the modeling constructs with additional semantics, in this case the

existence of a single instance of the Hotel class. This class constitutes the Do-

main Class, that is, the class that establishes the domain context, whose utility

will be shown in section 4.21.

2.1 Nomenclature constrainst

In order to facilitate the text analysis, it is necessary to de�ne a set of rules

for class, attribute and relationship names that complement the general UML

notation rules. These rules make easy the task of name reconstruction as will be

explained in 4.1. Several features must be considered for each component of the

CD (classes, attributes and relationships).
1 A whole explanation of Class Diagram design rules is out of the scope of this article.

Interested readers are referred to [12].
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Class names. The rules to take into account for the de�nition of a class name

are the following:

1. A simple noun beginning with a capital letter is a class name {i.e. Factura

(Bill){.

2. An usual abbreviation of language beginning with a capital letter is a class

name {i.e. Tlfn (Tel) is the abbreviation of Telephone number{.

3. An acronym is a class name {i.e. CP (Zip) is the acronym of Postal Code{.

4. A complex name made up of any element above described is a class name

{i.e. TipoHabitaci�on (RoomType){.

Attribute names. The way of de�ning attribute names follows rules similar

to those applied to class names, its main di�erence lying in that the attribute

name begins with a small letter. These rules are the following:

1. A simple noun beginning with a small letter is an attrbute name {i.e. cate-

gor��a (category){.

2. An usual abbreviation of language beginning with a small letter is an at-

tribute name {i.e. tlfn (tel) is the abbreviation of telephone number{.

3. An acronym is an attribute name {i.e. NSS is the acronym of Social Security

Number{.

4. A complex name made up of any element above described is an attribute

name {i.e. numFactura (billNumber){. In order to make easy the name re-

construction task, the attribute names will be split into several words by

capital letters.

Relationship names. Last, relationship names must follow the following rules:

1. A verb in its in�nitive form beginning with a capital letter is a relationship

name {i.e. Reservar (to book){.

2. A verb in its in�nitive form beginning with a capital letter plus a class name

is a relationship name {i.e. HacerCargo (to make charge){.

3 Prototyping

All the rules presented above simplify the de�nition of a search activity to �nd

meaningful data that could be part of the system population. Even in automated

environments this 'sampling population task' has traditionally been (up to our

knowledge) left out to the designer, who, either manually or by random genera-

tion routines had to create and maintain the necessary 'testing sets'. Although

these simple techniques have suÆced for a long time, both the increasingly im-

portant role of stakeholders in the software development process and some em-

pirical observations suggest that meaningful sampling data helps to improve not

only the stakeholder perception of the application under development, but also
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Fig. 1. Example of a class diagram

facilitates the veri�cation and validation process. Another useful characteristic

of the use of meaningful data during the development process is that it may

help to re�ne design aspects. Perhaps one of the most straightforward ones is

the evolution of the models to deal with data formats not previously considered.

Furthermore, we may be interested in maintaining certain restrictions on the

sampling data that permit the veri�cation and/or validation of certain parts of

the application. Letting the designer manually assure that these restrictions are

met may become cumbersome. All these reasons justify, from our point of view,

the use of natural language processing activities such as the ones presented next.

4 Natural Language Processing

As we have stated above, the goal of this paper is to identify some information

called relevant in real texts in order to �ll the underlying data structures. For

this task, Information Extraction (IE) techniques, an application of Natural

Language Processing, are used. Information extraction is the name given to any

process that structures and combines data which is found, explicitely stated or

implied, in one or more texts. It is important to stress that we do not aim at

developing an information extraction system, but at taking advantage of this

technique to select data that provides content to the domain models.

In the following subsections we will show the Information Extraction tech-

niques that have been used in this system, as well as the constraints that must

be ful�lled in the CD to help the automation of the sampling data.
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4.1 Name Reconstruction

In order to obtain the word sense through WordNet it is necessary to make

a construction of class, attribute and relationship names from the CD. In this

construction, a dictionary of acronyms and abbreviations is used. This dictionary

returns their full names. Each entry in the dictionary relates the acronym or the

abbreviation to its full name. Moreover, this dictionary could be extended with

new user-de�ned entries.

Finally, this dictionary is used together with an appropriate set of heuristic

rules (e.g. abbreviation + Capital word ! Full word + "of" + word, {numBill

(number of bill){) to accomplish the reconstruction of the names. This informa-

tion will be used in the following steps.

4.2 Domain Recognition

One of the main tasks that must be accomplished in any kind of web searching is

to avoid the problem with word sense ambiguity. In this sense, the part-of-speech

of this word is an important clue to detect ambiguities. For instance, the word

'plant ' has a di�erent meaning when it acts as a verb from a noun. Moreover,

the same word with the same part-of-speech could have several senses when it

is de�ned in di�erent domains. For instance, the noun 'mouse' has a di�erent

meaning if it is de�ned into a computer-science domain or in an animal one.

Furthermore, also the same word with the same part-of-speech inside the

same domain could have di�erent senses. In this case, the clue is the belonging

to a de�ned subdomain. This is, for example, the di�erent sense of the word

'charge' in a hotel domain that could mean the price charged to the custom for

the service, or the task that has been assigned to a person in the hotel.

As above shown, our proposal is based on the use of the names of attributes to

�nd possible values to them. Unfortunately, the name of an attribute is not free

from a possible ambiguity, as well as the information that is going to be extracted

from the World Wide Web. So, ambiguity must be solved in two di�erent �elds,

on one hand, in the attribute name, and on the other hand, in the information

to be extracted from the WWW. In order to solve the ambiguity in the attribute

name, our proposal makes use of the following knowledge: a) Part-of-speech

(POS). POS information is known in a CD. In this way, attribute or class names

are usually nouns. However, the name of a relationship is a verb. b) Domain

de�nition. Domain is one of the clues to word sense disambiguation. In order

to establish the domain in which the CD has been de�ned, every CD is forced to

have a DOMAIN CLASS in which information about the general domain of the

diagram is user-de�ned. This domain must be selected from a domain ontology.

The de�nition of this ontology is based on the domain classi�cation used by

web searchers as we will further explain. c) Subdomain recognition. In those

cases in which domain is not enough to word sense disambiguation, a subdomain

recognition must be performed. In our proposal a subdomain recognition module

for class attribute names has been developed. This module is based on heuristic

rules that relate attributes with their classes and the relationships between their
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classes and other classes. For instance, 'name' is a very usual word as as attribute

name. However, it has no sense in its own. To identify this sense we must know

information about the class which it belongs to. In this case, if the name class

is 'Person' the sense of this 'name' is, without doubt, inferred.

Once all the information to solve the ambiguity is obtained, then an unique

word sense is obtained through the WordNet consulting module. This mod-

ule performs a consult in the lexical database WordNet, and �lters the result

with POS, domain, and subdomain values.

Other problem to solve is the ambiguity in the information that is going

to be extracted from WWW texts. Again, some additional information about

words must be included in order to de�ne their concrete sense. In this case our

system is equipped with some tools providing this kind of information: a) POS

tagger. This tool provides the information about part-of-speech for every word

in the text that is being analyzed. b) Domain web searcher. Our system takes

advantage of the domain classi�cation developed by any web search engine. By

means of this kind of web search engines, the searching scope is reduced to web

pages included in this domain. To be more precise, we will reduce the scope

to the domain de�ned in the DOMAIN CLASS of the CD. That is the reason

why the ontology used to de�ne these DOMAIN CLASSES is based on the

web searchers domain classi�cation. In this work we have used the Google web

search engine (www.google.com). Consequently, the ontology used to de�ne the

DOMAIN CLASS has been extracted from the one de�ne in Google. c) Word

sense disambiguator (WSD). Finally, a WSD system is used to disambiguate

those cases in which POS and domain are not enough to extract a single sense.

In this way, the WSD system developed by [7] is being used. This tools provides

a single WordNet label for each word.

Once we have clari�ed the way of obtaining a single sense for both attribute

names and the information that is going to be extracted, then a compatibility

feature must be identi�ed between them. This feature determines if the web

information �ts the attribute name, so it is useful to �ll this structure.

However, this feature not only needs to perform a direct comparison between

the WordNet senses, but also needs to apply some semantic relationships as

de�ned in WordNet namely the synonym, hyperonym and hyponym relationships

between those senses to relax this compatibility feature. This task provides all

needed information to the Named-Entity recognition module that we will explain

in the next subsection.

4.3 Named-Entity Recognition

The main technique used to identify real information is the named-entity recog-

nition technique. According to MUC [9], we can distinguish di�erent kinds of

NEs: person, organization, location, dates, currency, etc. NE recognition involves

processing a text and identifying certain occurrences of words or expressions be-

longing to a category of NE. Di�erent approaches have been developed, most of

them use gazetteers and list of names to help recognizing the entities [11, 8]. Ob-

viously, we will need huge lists to guarantee a high score. However, Cucchiarelli et
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al. in [2] report that one of the bottlenecks in designing NE recognition systems

is the limited availability of large gazetteers. Mikheev et al. in [6] develop a NE

recognition system which combines rule-based grammars with statistical models

(maximum entropy). Our NE recognition system can be split in two phases:

Name identi�cation. The �rst problem to be solved is the identi�cation of

the boundaries of a NE. Entities can be complex, consisting of several words.

This is specially common when conjunctions, prepositions and de�nite articles

are involved. In Spanish, it is common to �nd full names with prepositions and

de�nite articles (Joaqu��n de la Cierva) or conjunction (Santiago Ram�on y Cajal).

Moreover, in Spanish like in English, the name of companies can be made up of

any kind of word (bare nouns, adjectives, numbers, conjunctions, etc.). According

to McDonald [5], we can use internal and external evidence to recognize a NE

and to classify it as belonging to the adequate category. The following rules are

applied in order to establish the starting and end point of an NE:

1. Looking for a trigger. Internal evidences notify the presence of NE. These

internal evidence can be made up of several speci�c words called triggers.

Every kind of category has speci�c triggers. The names of companies fre-

quently use corporate designators such as S.A., S.L., Co., Cia., Ltd., Inc., etc.

The names of people frequently use person titles, such as Sr., Sra., Mr., Mrs.,

etc. Also, the names of locations may use words such as Ciudad (City), Calle

(Street), Avda. (Ave.).
2. Grouping all capital words. However, these previous triggers do not always

appear with the NE. In this case, other internal evidence is needed to identify

the NE, such as the use of partial orders of the composing words.

In addition to internal evidence, external evidence can be used to identify

some entities. The external evidence is made up of a set of rules taking advantage

of some words that appear next to entities. These special words depend on the

domain work. For this reason, we use the name classes and attributes from the

CD to identify some entities together with all the words semantically related to

the appropriate sense provided by the WSD. Moreover, we also use EuroWordNet

to �nd semantic names related to the name classes and attributes, as we have

previously described.

Name entity Disambiguation. Once the NE is identi�ed, several problems

can be found. This task aims at solving the following problems:

1. Ambiguity capitalized words. Sometimes, the �rst word of the sentence (cap-

ital word) appearing next to the entity can be identi�ed as a part of the entity

name ([The Melia] o�ers... vs. The [Melia] o�ers...). This problem is solved

by matching previous appearances of the entity. If it is the �rst appearance,

both structures are considered, and the removal of one of them is delayed

until later steps.
2. Semantic ambiguity. The structure of di�erent NEs (person and location,

person and organization, etc.) can be similar. Typical examples are exten-

sively shown in literature, (e.g. John F. Kennedy, Philip Morris). Our NE
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recognition system uses the semantic information associated to the verb of

the sentence and the top ontology of WordNet in order to solve such problem.

3. Structural ambiguity. Di�erent types of problems can be classi�ed within

structural ambiguity. All structural problems are caused by the use of prepo-

sitions and conjunctions. This type of words cause the problem of the limita-

tion of the entity: a) Use of Conjunctions. The appearance of a conjunction

between capital words causes a doubt related to whether to add both cap-

ital words to the same entity ([Construcciones y Contratas S.A.] construye la

autopistas... {[Construcciones y Contratas S.A.] builds the motorway...{) or to

split them in two di�erent entities ([Real Madrid y P. Vieira] acuerdan reunirse

de nuevo... {[Real Madrid and P. Vieira] agreed to meet again...{). The use of

verb's number (singular, plural) can help to take a decision about to add or

to split the words. According to [10], the study of triggers can also to help

us to decide the formation of the entity. b) Use of Prepositions. The use of

preposition as part of the NE is mainly used in Organization and Location

([Center for Scienti�c Researchs]...). This fact can cause some problems when

two entities are related using this type of word (noti�caci�on del [COI] para

[Miguel Indurain]... { noti�cation of [COI] for [Miguel Indurain]). This kind of

problem is the most diÆcult to solve. Our system uses a list of words, such

as center, that usually appears next to a preposition and a set of capital

words making up an unique entity.

4.4 No named-entity recognition

Frequently, attributes from CD requiere values made up of bare nouns instead of

proper nouns. For example, an attribute as Position (Categor��a) from Employer

(Empleado) can be �ll with Recepcionist (Recepcionista) andWaiter (Camarero).

The name reconstruction of attributes and classes, the WSD and the external

evidence play an important role to recognize them from the text. The external

evidence use the name reconstructed to match into the text all occurrences of

the name and its semantic related word.

5 NLP Algorithm

Next, a general view of the NLP algorithm that has been used is shown:

1. The CD de�ned according a set of nomenclature constraints is translated into

a textual XML structure showing attribute, class, and relationship names.

2. The names are reconstructed to obtain their equivalents in natural language.

3. Using the Domain Class, the main domain of the CD is recognized.

4. For each attribute name, its sub-domain is recognized by means of the class

in which it is included. The attribute names together with their domains and

sub-domains are used to access WordNet and extract their semantic related

words (synonyms, hyperonyms, and hyponyms).
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5. Using the Google web search engine we obtain the documents containing

any of these attribute and class names, or their semantic related words. To

guarantee the correct domain of the document, this web search is performed

through the Google directory that includes the Domain Class.

6. The sentences where the goal words appear are parsed by means of a POS

tagger and a WSD to solve the ambiguity, discarding incorrect senses.

7. Once the texts were relevant information can be founded have been selected,

then the NE recognition is applied to recognize proper nouns and bare nouns

associate to goal words.

8. The extracted information is provided to a Filling module using XML tags.

6 Filling the Schema

The last step in the sampling data extraction task is the load of such data in the

underlying data structures. Due to the fact that this process di�ers depending

on the underlying storage system, our system provides a middle step in which

an XML implementation-independent description of the data found during the

information extraction process is provided. Such description does not need to be

complete. Some attributes can belong to domains such as datatime or number

and for them random data can be generated. In this random data generation the

load module must take into account invariants associated to the CD constructs.

For example, imagine we have associated an OCL expression to the class Tipo-

Habitaci�on (see Fig. 1) that establishes that any room price must be between

80 and 200 Euros (precio<200 and precio>80 ). Of course, the random numbers

generated for such attribute must stick to such restriction to provide sound in-

formation. Once this XML template has been modi�ed with such random data,

the actual load process of the system must be performed. In the actual stage

of development, we have restricted ourselves to underlying relational structures

which are directly derived from the modeled CD. This load module receives, in

addition to the XML data �le, another XML document that, by means of rules,

gathers general constraints that must be ful�lled by the system population for a

given purpose. As a further example, imagine we need at least one unpaid invoice

(Factura.estado=pendiente, see Fig. 1) in order to be able to verify and validate

the functionality associated to such situation. This fact would be modeled by

means of the following rule:

<TSampling>

<rule context="Invoice">

...

<condition name="AtLeastOneInvoice" mandatory="yes"

minOcc="1" maxOcc="" value="estado=pendiente"/>

...

</rule>

</TSampling>

Inside this rule, we can observe how the mandatory character of the rule

determines whether the NLP algorithm can �nish or, on the contrary, must

continue looking for new sampling data. The data set degree of compliance to

the non mandatory rules determines its quality for the system purpose.
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7 Conclusions

Prototyping is widely used to validate and verify the functionality of Information

System applications. However, nowadays prototyping tools are more focused on

designing than data �lling task. We have presented an automatic system that is

able to avoid the hard manual task that developers of prototypes must perform

to obtain test data. This system looks for real data in web documents. Taking

advantage of Information Extraction techniques, our system uses a NE recog-

nizer to obtain the speci�c information to be related to classes and attributes.

The DC must ful�ll a minor set of constraints to aid the automation. As a result,

the prototype will be �lled with real and understandable information that helps

in the veri�cation and evaluation process of the �nal application. Despite this

system has been successfully tested, several issues must be improved in further

versions of our system. In our proposal a small ontology based on the Google do-

mains has been used. However, a complete ontology must be de�ned to allow its

use on whatever kind of domain. The semantic �ne-grained of WordNet produces

errors in the WSD module. The WSD module is forced to choose among di�er-

ent senses (very close related) despite all of them belongs to the same domain.

To solve this problem, future work will apply the Magnini domain WordNet [4]

that clusters close related senses. The main contributions of this work are: a)

Entity recognition system based on UML CD, b) Ontology, and c) data insertion

strategy.
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