
Interactive Ontology Acquisition from Texts

Rafael Valencia García, Jesualdo-Tomás Fernández Breis, Rodrigo Martínez Béjar

Departamento de Ingeniería de la Información y las Comunicaciones,
Universidad de Murcia, CP30071, Murcia, Spain

rvg1@alu.um.es, {jfernand,rodrigo}@dif.um.es

Abstract. The approach presented in this work could simplify Knowledge
Acquisition Processes by means of extracting knowledge directly from natural
language texts, so that knowledge could be acquired straight from experts. This
approach uses a morphological analyser to improve the processes with the
purpose of achieving language independency. The knowledge acquired from
text is represented by means of ontological categories.

1 Introduction

Extracting knowledge directly from natural language text is a challenging task, as it
would allow obtaining knowledge easily and, what is more, without the intervention
of knowledge engineers. Our ultimate goal is the development of tools capable of
extracting knowledge from text and able to interact directly with experts of any
application domain. To do this, we agree with [2] in that a person who knows a
language should in part know the rules of the language. In particular, we accounted
for this assumption in designing and implementing a morphological analyser. This
paper presents a technique for generating knowledge from text through the
combination of knowledge modelling and natural language processing techniques.
The main idea behind this approach is straightforward: the system stores knowledge
found by the expert in order to be able to automatically identify this knowledge
whenever it reappears.

Knowledge has been represented in this work by means of ontological categories.
In literature, ontologies are commonly defined as specifications of domain knowledge
conceptualisations [13]. An advantage of ontologies is the possibility of making a
mathematical study on their properties (see [3]). A series of functions to capture
knowledge have been implemented in order to represent the knowledge acquired
through ontological components.

The structure of the paper is described as follows. Section 2 presents an overview of
the approach presented. Section 3 accounts for the language level used in this work.
Section 4 explains the knowledge level. Section 5 describes the system
implementation. Finally, in Section 6 some final conclusions are remarked.

2. An Overview of the Approach

The aim of this work was to implement a system able to extract knowledge from
natural language texts. More precisely, we have focused on building an ontology
from text. So, an implicit assumption (Assumption 1) is that ontologies can be used to
represent knowledge. As the whole text can be very long, our approach divides it into
minor fragments in order to facilitate its processing. Furthermore, texts come from
some domain or task, that is, its content is about some specific application domain.
An expert is supposed to build the ontology. This gave rise to another assumption
(Assumption 2): experts can build ontologies from text. This expert must have
expertise on the specific task described along the text, and the expert is somehow
associated with the system and to the text by the task itself. It can be said that
knowledge resides inside the text. So, there is another implicit assumption
(Assumption 3): text can contain knowledge. Ontologies permit to divide knowledge
into categories such as concepts, attributes, relationships, rules, axioms, etc. These
knowledge entities can appear explicitly in the text, although sometimes knowledge is
only implicitly referred to. Thus, the process attempts to find only explicit knowledge
from texts.

By constraining ourselves to the above assumptions, the starting point was an
empty knowledge base, so that the system is unable to find any knowledge in the text
and the expert has to introduce knowledge manually. However, in the approach
experts do not just find knowledge in a single fragment, but they also identify
expressions from which that knowledge can be derived. The expert identifies all the
knowledge entities and (s)he also tells the system the expressions (fragments of a
sentence) in which they appear. These expressions-knowledge associations are stored
by the system in order to be used for new knowledge findings thereafter. For instance,
if the linguistic expression “car” is considered a concept, then the association (car,
concept) would be created. The expert only has to identify these associations once,
and from that moment on the system will automatically proceed, and the expert’s task
will just be to confirm the results output by the system. Thus, the system has to
identify knowledge in fragments as well as knowledge referenced by it. The process
revealed some problems: (1) searching for meaningful expressions in a text; (2)
deciding what to do when an expression has more than one knowledge association in
the knowledge base; and (3) identifying knowledge referred to by “non-concepts”.
The first problem must be solved at language (i.e., grammar) level, whereas the other
two must be solved at knowledge level. In the following sections, both levels are
introduced.

3. The Language Level

This level is in charge of the following tasks: (1) performing morphological analysis;
(2) searching for linguistic expressions similar to the text expressions; and (3)
providing grammatical rules for inferring knowledge associations from grammatical
ones.

A morphological analyser was designed and implemented using the learning
algorithm C4.5 [10] in order to categorise each word of each sentence. The results of
such analysis (i.e., grammar categories) were used to decide which words have no
semantic meaning. In particular, words categorised as preposition, particle,
conjunction, interjection, pronoun, and determiner were considered to be semantically
meaningless. Also, grammar categories were used to define grammar patterns (see
below) in order to support the knowledge inference process.

One word is processed at each step of the algorithm. The system looks for words
which are similar to the currently processed word in a database. Then, for each
similar expression found, it must be checked whether it is acceptable. The
expressions that are similar and acceptable will be treated by the knowledge level.
The detailed description of both functions is done next.
The similar function is in charge of identifying which expressions of the database are
similar to the current word of the fragment. In its simplest case, it would be an
“equal” function. Nevertheless, this function cannot deal with compound expressions
by itself; therefore a function of the type “isPrefix” is needed, which checks whether
the current word is a substring of another word or not. In here, a word in the current
fragment is “similar” to an expression in the knowledge base if the expression starts
with the current word.

The acceptable function was introduced in order to determine whether the current
word and a similar expression are not just “similar by chance”. The “isPrefix”
function has an important drawback: if the current word is the article “a”, any
expression starting with “a”, as “assurance”, “added value”, “a hundred” or “advert”
will be (candidates to be) considered as similar. This function, which limits the
number of acceptable options amongst the similar ones, accepts an existing
expression in the database if it actually appears in the current fragment. Current words
in a text fragment are always single constituents. However, database expressions can
contain more than one word. If a word is acceptable, then the current fragment will
contain all the words of the database expression. That is, the current word needs to be
enlarged to cover all the words of the database expression, creating a new object that
contains all the words.

Grammar patterns indicate a relation between words by knowing only their
grammar category, and each language has its own grammar patterns. Thus, by using
these patterns we can approach this process to be language-independent. The
grammar patterns used in this work (see Table 1), are based on the ones presented in
[12] for English. In such a table, we say “property” of one word, because a priori, the

existing relation between two words is unknown. The knowledge level will be in
charge of making it explicit the specific relation.

Table 1. Grammar Patterns.

Previous word(s) Current word Relation Example
Adjective Adjective The previous word is a property of the current one Sweetie lovely

Adjective The previous word is a property of the current one Very popular Adverb
Adverb The previous word is a property of the current one Very strongly

Adjective The previous word is a property of the current one Tall boy
Noun The previous word is a property of the current one Telephone

directory
Noun+prep+(det)

Noun

The current Noun is a property of the first one The table of wood

4. The Knowledge Level

This level is in charge of extracting knowledge from texts. Associations between
linguistic expressions and knowledge categories will be made in this layer. For this
purpose, the grammar (language) level will also be needed. In this work, four
knowledge categories can be assigned to a linguistic expression, namely, concept,
attribute, value, and relation. The knowledge extraction process can be split into three
phases: (1) knowledge hypotheses formulation; (2) setting hypothesis in a context;
and (3) decision making. A hypothesis is an association between a knowledge
category and a linguistic expression.

At the beginning, the initial set of hypotheses is set to empty, and the algorithm,
which is text fragment-oriented, will finish once all words in the current fragment
have been analysed from both grammar and knowledge levels.

Then, for each word, the knowledge level is supplied by the grammar level with a
set of acceptable linguistic expressions. For such expressions, these actions are
performed: (1) obtaining and sorting the associated knowledge to them in the
knowledge base; (2) creating a new hypothesis that matches the knowledge base
expression and associates previously sorted associated knowledge to it; and (3) adding
the new hypothesis to the list of fragment expressions with its associated knowledge.
Obviously, there might be cases where no good options are found. In that case, the
user has to be provided with the possibility of defining new knowledge associated to
that particular expression. Alternatively, these hypotheses might also be
straightforwardly ignored. This implies that the system needs to provide that user such
possibility. In case different hypotheses exist, the system will have to make a
decision.

At this point, the system is fitted with a set of knowledge hypotheses for the
linguistic expression. However, the system’s task has not finished yet, unless the
hypothesis infers a concept; else, that is, if the inferred knowledge is a different
knowledge entity (i.e., attribute, value, relation) some operations still need to be
performed. In what follows, we shall explain the operations that need to be performed
for different knowledge entities. When the system proposes an attribute as the
hypothetical knowledge category, the system searches for the most left-nearby

concept in the current fragment. However, that is not always correct. For example in
the following fragment: “... due to the weight of the table”, the concept table is on
the right of its attribute weight. In this system, the knowledge level receives support
from the grammar level for accomplishing such task. In particular, the grammar
patterns are very helpful for this purpose. Once all the hypotheses have been
formulated, the system will obtain attributes, concepts, and values, so that when the
system has to find relations between knowledge entities, the system makes use of
such patterns. For example, in the following fragment: “… the red car …”, if the
system has tagged red as a value, and car as a concept in the search phase, by using
the pattern ‘Adj + Noun’ the system will find a relation between the concept car and
the value red.

All relations are assumed to be binary between concepts. That is, two concepts
need to be found. Let us consider this fragment now: “...synchronized points are
stored in the ship's log ... “. In this sentence one of the candidates is on the left hand-
side of the linguistic expression “are stored”, and the other one on the right hand-side.
The system searches for linguistic expressions with associated hypotheses on the left
and right hand-side, and candidates are selected according to various criteria:
• If the current expression is associated to a relation of the type “is-a” or “part-of”,

only concepts can be chosen as candidates as these relations can only exist between
concepts. Therefore, the system searches for two concepts, one on the left and one
on the right hand-side of the current expression.

• It is very rare that any of the candidates of a relation is a value. Thus, the system is
designed to ignore values for such task.

• If an attribute is found, the process of searching for a related concept is the same as
the one described above to provide a context for attributes.

• The search process is similar to the one described in previous sections. Candidates
are searched (1) in a pre-determined number of linguistic expressions for which the
user has inferred knowledge, (2) in the hypotheses obtained in the previous phase
and, finally (3) in the user expressions.

 In the previous example, the linguistic expression “are stored” is associated to a
“part-of” relation, so the system will search a concept on the left hand-side
(“synchronized points”) and another concept on the rigth hand-side (“ship’s log”). In
case one knowledge hypothesis has been formulated for one linguistic expression,
such knowledge will be associated to the linguistic expression. However, there could
be more than one hypothesis for one linguistic expression. This can happen due to (1)
(domain dependency) the term meaning can vary according to the domain in which it
is used; or (2) (person dependency) it is likely that various experts assign different
meanings to the same expression; or (3) (spatial location) if an expression has been
used recently with a specific meaning and the same expression appears again, then it
is very likely that both expressions mean the same.

Whenever different hypotheses are obtained, the system rearranges them according
to the previous three factors. Amongst those factors, spatial location interacts in two
different ways. The system considers whether an expression has already been used in
the same text file and/or in the current textual fragment (this case is given the highest
priority). The various sorting criteria are characterized by three parameters, namely,
who recognised the knowledge, the type of domain and whether the expression
belongs to the same fragment and/or text.

5 The Software Tool

A tool based on the approach described above has been designed and implemented for
acquiring knowledge from texts (text needs to be specified in a text file; i.e., in ASCII
format). Text length is irrelevant as it can be split into minor fragments. So the system
composes each fragment by one sentence and then the expert (i.e., the end user) can
accept this fragment selection. If the expert rejects that selection, (s)he will have to
select the next fragment to be analysed. Text samples might belong to one or more
specific domains or tasks. The distinction of domains is important as word meanings
depend heavily on the domain they appear in. Each expert can be acquainted with
knowledge of one or more domains. The system also accounts for the associations
between experts and tasks.

An expert on a specific task specifies the file to work with and a new work session
is created that is associated to this expert, the task and the file. While processing
fragments, the expert finds or recognises knowledge. This knowledge can explicitly or
implicitly appear in the textual fragment. If knowledge appears explicitly in the
fragment, then the expert has to identify the expression in which such knowledge
appears, associating expressions to knowledge or inferring knowledge from them.
Recall that expressions and knowledge do not necessarily coincide.

The tool is fitted with two distinct working modes: query mode and maintenance
mode. In the maintenance mode, users are provided with the full functionality of the
tool (adding new experts and tasks, associating experts to tasks; saving the
work/session(s) in the database, loading previously saved work, etc). The query mode
has a reduced functionality. Users can neither perform management activities nor save
work/sessions in the database in query mode. In maintenance mode, the user inserts
knowledge with the help of the tool; the system proposes knowledge to the user by
making use of natural language recognition techniques. On the other hand, in query
mode, the user cannot insert new knowledge as ontologies are built automatically.

The system is able to infer concepts, attributes, values and relations. However,
users can define those axioms they consider necessary or relevant for the application
domain.

In our tool, five ontological knowledge categories are used, namely:
• Concepts, representing a class of domain entities.
• Attributes, representing the properties of a given concept.
• Values. The tool is oriented to cover both quantitative and qualitative values.
• Relations.
• Axioms, which are domain rules that include relational operators. For instance,

Force = mass * acceleration.
 Relations play the same role as in a relation/entity model, although some
constraints have been imposed. In this tool, relations are binary, and there is a pre-
defined set of relation types: IS-A (this relation allows establishing taxonomies;
example: A man is a human being); PART-OF (this mereological relation indicates
that a concept is comprised of other ones; example: The engine is part of the car);
ASSOCIATION (this accounts for any relation between two concepts that is neither
taxonomic nor mereological; example: Hair colour is related to skin colour); and
INFLUENCE (this is an association relation in which a concept can influence the

existence of another concept).Taxonomic and mereological relations do only exist
between two concepts. The remaining relations can exist between whatever two
ontological categories, although a relation cannot be part of another relation.

The structure of the ontologies resulting from using our approach can be seen in
Figure 1. The tree on the left hand-side of Figure 1 is the ontology, this having three
main branches: concepts, relations, and rules (i.e., axioms). Axioms appear as
branches of the “rules” node. Each concept has branches for its attributes and each
attribute has branches for its values. Relations are branches of the “relationships”
node, and relations instances can be viewed on the right side of the screen (i.e., the IS-
A relation).

Fig. 1. Analysis of a text fragment

In order to evaluate the usefulness of the approach in real settings, a case study
(experiment) was performed. It consisted of applying it to several sub-domains of
Computer Science with ‘simulated experts’, namely, 5th year students instructed for
the experiment (one expert per sub-domain). The instruction was done through the
provision of abundant information concerning the sub-domain they had to work
thereafter. Concerning motivation, a list containing descriptions of each sub-domain
(already well-known by them through the corresponding subjects studied in the
career) utilised in the case study was first shown to them so that they selected those
most ‘attractive’ to them. With this we tried to ensure the ‘expert’ was motivated
enough to do his/her job in the experiment. With all, each expert was given a text
from the domain which they had been instructed on. Then, we checked whether the
assumptions aforementioned were too strong or not. The results of the knowledge
acquisition process from text in this experiment show that the simulated experts study
overcame the technical, implicit restrictions of our approach and extracted and
represented explicit knowledge from text, as it was our goal. The data of the
experiment can be seen in Table 2. The experiment results can be accessed at our web
page http://www.klt.dif.um.es.

Table 2. Results of the experiment.

Domain Concepts Attributes Values IS-A PART-OF ASS INF OTHERS Time
Computer control 277 117 114 58 40 16 15 1 3:05
DBMS Design 125 63 99 90 45 0 1 6 4:50
Netware Quality
Service (QoS) 41 11 26 36 2 0 0 0 1:06
Process execution 124 23 68 136 7 1 0 2 3:50
Operating Systems 113 71 134 84 39 12 0 6 1:53
Shared memory 72 37 64 46 14 36 12 1 5:56
Compilers 116 44 110 57 47 0 2 1 2:12
Netware protocols 133 56 59 67 35 43 47 0 6:14

6. Discussion and Conclusions

In this paper, an approach that combines knowledge acquisition and natural language
recognition techniques has been used for implementing a system capable of extracting
knowledge from natural language texts in a supervised mode. The methodology,
which is based upon a set of explicit assumptions, presented in this work offers a new
and promising method for knowledge acquisition from text. The system has been
evaluated in one Computer Science domain and several sets of ontological categories
corresponding each to a different sub-domain have been discovered by applying the
framework described in this paper. We are confident that this approach for acquiring
knowledge from text offers some advantages with respect to pure linguistic methods
such as: (1) ambiguity is taken into account (i.e., person dependency, spatial location,
domain dependency); (2) rhetoric is not considered; (3) implicit knowledge can be
identified and added by the user; (4) the system is incremental and automatic; (5) the
system’s performance and transparency are acceptable. Two processing levels have
been used in this work, namely, knowledge level and language level. The way in
which the acquisition process has been divided into allows, in principle, the system to
be used for any language, by only adapting the language level to the particular
situation.

The way we approach knowledge structuring differs from the one presented in [11]:
our knowledge entities are concepts, attributes, values, relations, and rules whereas in
the same work, the discussion is about concepts, roles, individuals and axioms.
Another difference with the referred work is that the concept acquisition process is
performed differently in that work, too: the system’s suggestions are hypotheses the
user accepts or rejects. In [7], the process is structured in three phases: (1) generating
quality labels for hypotheses; (2) estimating the hypotheses credibility; and (3)
computing the hypotheses preference order. The expression-oriented analysis to
capture knowledge from text in the system presented here is somewhat more general
than the classic word-based approach described in [2], for whom words can be
derived from other words by means of transformation rules.

Semantics associated to terms has been dealt with also elsewhere. In particular, in
[4], the author recognises that semantic variations permit to recognise, for example,
verbal and adjectival phrases as conceptually equivalent to nominal terms.
Concerning tools for terms acquisition from text, there are others well-known in

literature, for instance, LEXTER [1], which was built for term acquisition from
French corpora. In our work, we go beyond term extraction to distinguish several
kinds of semantic terms through several ontological knowledge categories. The use of
ontologies for knowledge acquisition from text is discouraged in [5; 8] for domains in
which changes in expert knowledge is rapid and substantial. However, we believe to
have shown that our approach can easily be adapted to new requirements.

The methodology presented in this work can be considered an approach for
learning domain ontologies, although our purpose is not building a whole ontology
but acquire ontological components. In [9], a comparison of ontology learning
approaches is made. There, three different types of approaches, according to the type
of ontology to be learnt, are distinguished: natural language ontology, domain
ontology, and instance ontology. Most of the techniques for learning domain
ontologies only generates hierarchies of concepts or use a very reduced set of
relations whereas our approach is richer in that sense. Moreover, such techniques are
guided by a human knowledge engineer while our purpose is to generate the
ontological knowledge automatically (at least in the user mode).

In [6], an architecture for learning ontologies for the Semantic web is presented.
Such architecture includes a system for acquiring knowledge from texts. Statistical
methods are used for proposing new lexical entries, the ontology engineer being in
charge of making the final decision about the creation of new concepts. Moreover,
such a system is not only capable of dealing with taxonomic relations but it is also
capable of discovering different association rules that describe relations between
concepts. However, not much about the consistency of the ontologies built is also
done there as the ontologist is free to modify at any stage of the ontology learning
process. In our approach, by using the properties stated for the semantic relationships
we ensure to some extent consistency in the expert’s decision while inferences can be
made through the transitive property, if it is the case for the (semantic) relationship
under question.

Concerning further work, some improvements should be made with regard to
different knowledge entities: (a) relations (i.e., solving situations such as those in
which no participants appear on either side of the relation; a possible solution might
be checking whether the concept is directly followed by an attribute; here, we might
think that it is more likely that the attribute is the second participant and not the
concept); (b) pronouns (these are not dealt with in this work and would be another
interesting feature to include).

Acknowledgements

This paper has been possible thanks to the financial support of the Séneca Foundation,
Coordination Centre for Research, through the Séneca Program (FPI). The research
has been performed under projects FIT-150200-2001-320, FIT-070000-2001-785, and
Seneca PL/3/FS/00.

References

1. Bourigault, D.: LEXTER, a Natural Language tool for terminology extraction, In
Proceedings, 7th EURALEX International Congress, (1996), 771-779, Goteborg, Sweden,.

2. Chomsky, N.: Knowledge of Language: Its Nature, Origin, and Use, Praeger, (1986).
3. Fernández-Breis, J.T., Castellanos-Nieves, D., Valencia-Garcia, R., Vivancos-Vicente, P.J.,

Martínez-Béjar, R., and De las Heras-González, M.: Towards Scott domains-based
topological ontology models. An application to a cancer domain, in Proceedings of
International Conference on Formal Ontology in Information Systems. Maine, EEUU,
(2001).

4. Jacquemin, C.: Spotting and Discovering Terms through Natural Language Processing, MIT
Press, (2001).

5. Jones, D.M., Paton, R.C.: Acquisition of Conceptual Structure in Scientific Theory. In
E.Plaza & R. Benjamins (Eds), Proceedings of the European Knowledge Acquisition
Workshop, (1997),145-158, Sant Feliu de Guixols, Spain.

6. Maedche, A., Staab, S.: “Ontology Learning for the Semantic Web”, IEEE Intelligent
Systems, vol. 16, no. 2 (2001) 72 – 79.

7. Musen, M.A.: Domain Ontologies in Software Engineering: Use of Protegé with the EON
Architecture. Methods of Information in Medicine, 37 (1998) 540-550.

8. O’Leary, D.E.: Impediments in the use of explicit ontologies for KBs development.
International Journal of Human-Computer Studies,46 (1997) 327-338.

9. Omelayenko, B.: Learning of Ontologies for the Web: the Analysis of Existent Approaches.
Proceedings of the International Workshop on Web Dynamics, London, UK, (2001).

10. Quinlan, J.R.: C4.5: programs for Machine Learning, San Mateo, Morgan Kaufmann,
(1993).

11. Romacker, M., Hahn, U.: Context-based Ambiguity Management for Natural Language
Processing, Lecture Notes in Artificial Intelligence 2116 (2001) 184-197.

12. Thomas, L.: Beginning Syntax, Oxford Blackwell, (1993).
13. Van Heijst, G., Schreiber, A.T., Wielinga, B.J.: Using explicit ontologies in KBS

development. International Journal of Human-Computer Studies, 45 (1997) 183-292.

