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Abstract. The approach presented in this work could simplify Knowledge 
Acquisition Processes by means of extracting knowledge directly from natural 
language texts, so that knowledge could be acquired straight from experts. This 
approach uses a morphological analyser to improve the processes with the 
purpose of achieving language independency. The knowledge acquired from 
text is represented by means of ontological categories. 

1 Introduction 

Extracting knowledge directly from natural language text is a challenging task, as it 
would allow obtaining knowledge easily and, what is more, without the intervention 
of knowledge engineers. Our ultimate goal is the development of tools capable of 
extracting knowledge from text and able to interact directly with experts of any 
application domain.  To do this, we agree with [2] in that a person who knows a 
language should in part know the rules of the language. In particular, we accounted 
for this assumption in designing and implementing a morphological analyser. This 
paper presents a technique for generating knowledge from text through the 
combination of knowledge modelling and natural language processing techniques. 
The main idea behind this approach is straightforward: the system stores knowledge 
found by the expert in order to be able to automatically identify this knowledge 
whenever it reappears.  

Knowledge has been represented in this work by means of ontological categories. 
In literature, ontologies are commonly defined as specifications of domain knowledge 
conceptualisations [13]. An advantage of ontologies is the possibility of making a 
mathematical study on their properties (see [3]). A series of functions to capture 
knowledge have been implemented in order to represent the knowledge acquired 
through ontological components. 

The structure of the paper is described as follows. Section 2 presents an overview of 
the approach presented. Section 3 accounts for the language level used in this work. 
Section 4 explains the knowledge level. Section 5 describes the system 
implementation. Finally, in Section 6 some final conclusions are remarked. 



2. An Overview of the Approach 

The aim of this work was to implement a system able to extract knowledge from 
natural language texts.  More precisely, we have focused on building an ontology 
from text. So, an implicit assumption (Assumption 1) is that ontologies can be used to 
represent knowledge. As the whole text can be very long, our approach divides it into 
minor fragments in order to facilitate its processing. Furthermore, texts come from 
some domain or task, that is, its content is about some specific application domain. 
An expert is supposed to build the ontology. This gave rise to another assumption 
(Assumption 2): experts can build ontologies from text. This expert must have 
expertise on the specific task described along the text, and the expert is somehow 
associated with the system and to the text by the task itself. It can be said that 
knowledge resides inside the text. So, there is another implicit assumption 
(Assumption 3): text can contain knowledge. Ontologies permit to divide knowledge 
into categories such as concepts, attributes, relationships, rules, axioms, etc. These 
knowledge entities can appear explicitly in the text, although sometimes knowledge is 
only implicitly referred to. Thus, the process attempts to find only explicit knowledge 
from texts. 

By constraining ourselves to the above assumptions, the starting point was an 
empty knowledge base, so that the system is unable to find any knowledge in the text 
and the expert has to introduce knowledge manually. However, in the approach 
experts do not just find knowledge in a single fragment, but they also identify 
expressions from which that knowledge can be derived. The expert identifies all the 
knowledge entities and (s)he also tells the system the expressions (fragments of a 
sentence) in which they appear. These expressions-knowledge associations are stored 
by the system in order to be used for new knowledge findings thereafter. For instance, 
if the linguistic expression “car” is considered a concept, then the association (car, 
concept) would be created. The expert only has to identify these associations once, 
and from that moment on the system will automatically proceed, and the expert’s task 
will just be to confirm the results output by the system. Thus, the system has to 
identify knowledge in fragments as well as knowledge referenced by it. The process 
revealed some problems: (1) searching for meaningful expressions in a text; (2) 
deciding what to do when an expression has more than one knowledge association in 
the knowledge base; and (3) identifying knowledge referred to by “non-concepts”. 
The first problem must be solved at language (i.e., grammar) level, whereas the other 
two must be solved at knowledge level.  In the following sections, both levels are 
introduced. 

 
 



 

3. The Language Level 

This level is in charge of the following tasks: (1) performing morphological analysis; 
(2) searching for linguistic expressions similar to the text expressions; and (3) 
providing grammatical rules for inferring knowledge associations from grammatical 
ones.  

A morphological analyser was designed and implemented using the learning 
algorithm C4.5 [10] in order to categorise each word of each sentence. The results of 
such analysis (i.e., grammar categories) were used to decide which words have no 
semantic meaning. In particular, words categorised as preposition, particle, 
conjunction, interjection, pronoun, and determiner were considered to be semantically 
meaningless. Also, grammar categories were used to define grammar patterns (see 
below) in order to support the knowledge inference process. 

One word is processed at each step of the algorithm. The system looks for words 
which are similar to the currently processed word in a database. Then, for each 
similar expression found, it must be checked whether it is acceptable. The 
expressions that are similar and acceptable will be treated by the knowledge level. 
The detailed description of both functions is done next. 
The similar function is in charge of identifying which expressions of the database are 
similar to the current word of the fragment. In its simplest case, it would be an 
“equal” function. Nevertheless, this function cannot deal with compound expressions 
by itself; therefore a function of the type “isPrefix” is needed, which checks whether 
the current word is a substring of another word or not. In here, a word in the current 
fragment is “similar” to an expression in the knowledge base if the expression starts 
with the current word.  

The acceptable function was introduced in order to determine whether the current 
word and a similar expression are not just “similar by chance”. The “isPrefix” 
function has an important drawback: if the current word is the article “a”, any 
expression starting with “a”, as “assurance”, “added value”, “a hundred” or “advert” 
will be (candidates to be) considered as similar. This function, which limits the 
number of acceptable options amongst the similar ones, accepts an existing 
expression in the database if it actually appears in the current fragment. Current words 
in a text fragment are always single constituents. However, database expressions can 
contain more than one word. If a word is acceptable, then the current fragment will 
contain all the words of the database expression. That is, the current word needs to be 
enlarged to cover all the words of the database expression, creating a new object that 
contains all the words. 

Grammar patterns indicate a relation between words by knowing only their 
grammar category, and each language has its own grammar patterns. Thus, by using 
these patterns we can approach this process to be language-independent. The 
grammar patterns used in this work (see Table 1), are based on the ones presented in 
[12] for English. In such a table, we say “property” of one word, because a priori, the 



existing relation between two words is unknown. The knowledge level will be in 
charge of making it explicit the specific relation. 

 

Table 1. Grammar Patterns. 

Previous word(s) Current word Relation Example 
Adjective Adjective The previous word is a property of the current one Sweetie lovely 

Adjective The previous word is a property of the current one Very popular Adverb 
Adverb The previous word is a property of the current one Very strongly 

Adjective The previous word is a property of the current one Tall boy 
Noun The previous word is a property of the current one Telephone 

directory 
Noun+prep+(det) 

 
Noun 

The current Noun is a property of the first one The table of wood 

4. The Knowledge Level 

This level is in charge of extracting knowledge from texts. Associations between 
linguistic expressions and knowledge categories will be made in this layer. For this 
purpose, the grammar (language) level will also be needed.  In this work, four 
knowledge categories can be assigned to a linguistic expression, namely, concept, 
attribute, value, and relation. The knowledge extraction process can be split into three 
phases: (1) knowledge hypotheses formulation; (2) setting hypothesis in a context; 
and (3) decision making. A hypothesis is an association between a knowledge 
category and a linguistic expression. 

At the beginning, the initial set of hypotheses is set to empty, and the algorithm, 
which is text fragment-oriented, will finish once all words in the current fragment 
have been analysed from both grammar and knowledge levels.  

Then, for each word, the knowledge level is supplied by the grammar level with a 
set of acceptable linguistic expressions. For such expressions, these actions are 
performed: (1) obtaining and sorting the associated knowledge to them in the 
knowledge base; (2) creating a new hypothesis that matches the knowledge base 
expression and associates previously sorted associated knowledge to it; and (3) adding 
the new hypothesis to the list of fragment expressions with its associated knowledge. 
Obviously, there might be cases where no good options are found. In that case, the 
user has to be provided with the possibility of defining new knowledge associated to 
that particular expression. Alternatively, these hypotheses might also be 
straightforwardly ignored. This implies that the system needs to provide that user such 
possibility. In case different hypotheses exist, the system will have to make a 
decision.  

At this point, the system is fitted with a set of knowledge hypotheses for the 
linguistic expression. However, the system’s task has not finished yet, unless the 
hypothesis infers a concept; else, that is, if the inferred knowledge is a different 
knowledge entity (i.e., attribute, value, relation) some operations still need to be 
performed. In what follows, we shall explain the operations that need to be performed 
for different knowledge entities. When the system proposes an attribute as the 
hypothetical knowledge category, the system searches for the most left-nearby 



concept in the current fragment. However, that is not always correct. For example in 
the following fragment:  “... due to the weight of the table”, the concept table is on 
the right of its attribute weight.  In this system, the knowledge level receives support 
from the grammar level for accomplishing such task. In particular, the grammar 
patterns are very helpful for this purpose. Once all the hypotheses have been 
formulated, the system will obtain attributes, concepts, and values, so that when the 
system has to find relations between knowledge entities, the system makes use of 
such patterns. For example, in the following fragment: “… the red car …”, if the 
system has tagged red as a value, and car as a concept in the search phase, by using 
the pattern ‘Adj + Noun’ the system will find a relation between the concept car and 
the value red.  

All relations are assumed to be binary between concepts. That is, two concepts 
need to be found. Let us consider this fragment now: “...synchronized points are 
stored in the ship's log ... “. In this sentence one of the candidates is on the left hand-
side of the linguistic expression “are stored”, and the other one on the right hand-side. 
The system searches for linguistic expressions with associated hypotheses on the left 
and right hand-side, and candidates are selected according to various criteria:  
• If the current expression is associated to a relation of the type “is-a” or “part-of”, 

only concepts can be chosen as candidates as these relations can only exist between 
concepts. Therefore, the system searches for two concepts, one on the left and one 
on the right hand-side of the current expression. 

• It is very rare that any of the candidates of a relation is a value. Thus, the system is 
designed to ignore values for such task. 

• If an attribute is found, the process of searching for a related concept is the same as 
the one described above to provide a context for attributes. 

• The search process is similar to the one described in previous sections. Candidates 
are searched (1) in a pre-determined number of linguistic expressions for which the 
user has inferred knowledge, (2) in the hypotheses obtained in the previous phase 
and, finally (3) in the user expressions. 

 In the previous example, the linguistic expression “are stored” is associated to a 
“part-of” relation, so the system will search a concept on the left hand-side 
(“synchronized points”) and another concept on the rigth hand-side (“ship’s log”). In 
case one knowledge hypothesis has been formulated for one linguistic expression, 
such knowledge will be associated to the linguistic expression. However, there could 
be more than one hypothesis for one linguistic expression. This can happen due to (1) 
(domain dependency) the term meaning can vary according to the domain in which it 
is used; or (2) (person dependency) it is likely that various experts assign different 
meanings to the same expression; or (3) (spatial location) if an expression has been 
used recently with a specific meaning and the same expression appears again, then it 
is very likely that both expressions mean the same. 

Whenever different hypotheses are obtained, the system rearranges them according 
to the previous three factors. Amongst those factors, spatial location interacts in two 
different ways. The system considers whether an expression has already been used in 
the same text file and/or in the current textual fragment (this case is given the highest 
priority).  The various sorting criteria are characterized by three parameters, namely, 
who recognised the knowledge, the type of domain and whether the expression 
belongs to the same fragment and/or text.  



5 The Software Tool 

A tool based on the approach described above has been designed and implemented for 
acquiring knowledge from texts (text needs to be specified in a text file; i.e., in ASCII 
format). Text length is irrelevant as it can be split into minor fragments. So the system 
composes each fragment by one sentence and then the expert (i.e., the end user) can 
accept this fragment selection. If the expert rejects that selection, (s)he will have to 
select the next fragment to be analysed. Text samples might belong to one or more 
specific domains or tasks. The distinction of domains is important as word meanings 
depend heavily on the domain they appear in. Each expert can be acquainted with 
knowledge of one or more domains. The system also accounts for the associations 
between experts and tasks. 

An expert on a specific task specifies the file to work with and a new work session 
is created that is associated to this expert, the task and the file. While processing 
fragments, the expert finds or recognises knowledge. This knowledge can explicitly or 
implicitly appear in the textual fragment. If knowledge appears explicitly in the 
fragment, then the expert has to identify the expression in which such knowledge 
appears, associating expressions to knowledge or inferring knowledge from them. 
Recall that expressions and knowledge do not necessarily coincide.  

The tool is fitted with two distinct working modes: query mode and maintenance 
mode. In the maintenance mode, users are provided with the full functionality of the 
tool (adding new experts and tasks, associating experts to tasks; saving the 
work/session(s) in the database, loading previously saved work, etc). The query mode 
has a reduced functionality. Users can neither perform management activities nor save 
work/sessions in the database in query mode. In maintenance mode, the user inserts 
knowledge with the help of the tool; the system proposes knowledge to the user by 
making use of natural language recognition techniques. On the other hand, in query 
mode, the user cannot insert new knowledge as ontologies are built automatically. 

The system is able to infer concepts, attributes, values and relations. However, 
users can define those axioms they consider necessary or relevant for the application 
domain. 

In our tool, five ontological knowledge categories are used, namely: 
• Concepts, representing a class of domain entities. 
• Attributes, representing the properties of a given concept. 
• Values. The tool is oriented to cover both quantitative and qualitative values. 
• Relations. 
• Axioms, which are domain rules that include relational operators. For instance, 

Force = mass * acceleration. 
 Relations play the same role as in a relation/entity model, although some 
constraints have been imposed. In this tool, relations are binary, and there is a pre-
defined set of relation types: IS-A (this relation allows establishing taxonomies; 
example: A man is a human being); PART-OF (this mereological relation indicates 
that a concept is comprised of other ones; example: The engine is part of the car); 
ASSOCIATION (this accounts for any relation between two concepts that is neither 
taxonomic nor mereological; example: Hair colour is related to skin colour); and 
INFLUENCE (this is an association relation in which a concept can influence the 



existence of another concept).Taxonomic and mereological relations do only exist 
between two concepts. The remaining relations can exist between whatever two 
ontological categories, although a relation cannot be part of another relation. 

The structure of the ontologies resulting from using our approach can be seen in 
Figure 1. The tree on the left hand-side of Figure 1 is the ontology, this having three 
main branches: concepts, relations, and rules (i.e., axioms). Axioms appear as 
branches of the “rules” node. Each concept has branches for its attributes and each 
attribute has branches for its values. Relations are branches of the “relationships” 
node, and relations instances can be viewed on the right side of the screen (i.e., the IS-
A relation). 

 

 
Fig. 1. Analysis of a text fragment 

In order to evaluate the usefulness of the approach in real settings, a case study 
(experiment) was performed. It consisted of applying it to several sub-domains of 
Computer Science with ‘simulated experts’, namely, 5th year students instructed for 
the experiment (one expert per sub-domain). The instruction was done through the 
provision of abundant information concerning the sub-domain they had to work 
thereafter. Concerning motivation, a list containing descriptions of each sub-domain 
(already well-known by them through the corresponding subjects studied in the 
career) utilised in the case study was first shown to them so that they selected those 
most ‘attractive’ to them. With this we tried to ensure the ‘expert’ was motivated 
enough to do his/her job in the experiment. With all, each expert was given a text 
from the domain which they had been instructed on. Then, we checked whether the 
assumptions aforementioned were too strong or not. The results of the knowledge 
acquisition process from text in this experiment show that the simulated experts study 
overcame the technical, implicit restrictions of our approach and extracted and 
represented explicit knowledge from text, as it was our goal. The data of the 
experiment can be seen in Table 2. The experiment results can be accessed at our web 
page http://www.klt.dif.um.es. 

 



Table 2. Results of the experiment. 

Domain Concepts Attributes Values IS-A PART-OF ASS INF OTHERS Time 
Computer control 277 117 114 58 40 16 15 1 3:05 
DBMS Design 125 63 99 90 45 0 1 6 4:50 
Netware Quality 
Service (QoS) 41 11 26 36 2 0 0 0 1:06 
Process execution 124 23 68 136 7 1 0 2 3:50 
Operating Systems 113 71 134 84 39 12 0 6 1:53 
Shared memory 72 37 64 46 14 36 12 1 5:56 
Compilers 116 44 110 57 47 0 2 1 2:12 
Netware protocols 133 56 59 67 35 43 47 0 6:14 

6. Discussion and Conclusions 

In this paper, an approach that combines knowledge acquisition and natural language 
recognition techniques has been used for implementing a system capable of extracting 
knowledge from natural language texts in a supervised mode. The methodology, 
which is based upon a set of explicit assumptions, presented in this work offers a new 
and promising method for knowledge acquisition from text. The system has been 
evaluated in one Computer Science domain and several sets of ontological categories 
corresponding each to a different sub-domain have been discovered by applying the 
framework described in this paper. We are confident that this approach for acquiring 
knowledge from text offers some advantages with respect to pure linguistic methods 
such as: (1) ambiguity is taken into account (i.e., person dependency, spatial location, 
domain dependency); (2) rhetoric is not considered; (3) implicit knowledge can be 
identified and added by the user; (4) the system is incremental and automatic; (5) the 
system’s performance and transparency are acceptable. Two processing levels have 
been used in this work, namely, knowledge level and language level. The way in 
which the acquisition process has been divided into allows, in principle, the system to 
be used for any language, by only adapting the language level to the particular 
situation.  

The way we approach knowledge structuring differs from the one presented in [11]: 
our knowledge entities are concepts, attributes, values, relations, and rules whereas in 
the same work, the discussion is about concepts, roles, individuals and axioms. 
Another difference with the referred work is that the concept acquisition process is 
performed differently in that work, too: the system’s suggestions are hypotheses the 
user accepts or rejects. In [7], the process is structured in three phases: (1) generating 
quality labels for hypotheses; (2) estimating the hypotheses credibility; and (3) 
computing the hypotheses preference order. The expression-oriented analysis to 
capture knowledge from text in the system presented here is somewhat more general 
than the classic word-based approach described in [2], for whom words can be 
derived from other words by means of transformation rules. 

Semantics associated to terms has been dealt with also elsewhere. In particular, in 
[4], the author recognises that semantic variations permit to recognise, for example, 
verbal and adjectival phrases as conceptually equivalent to nominal terms. 
Concerning tools for terms acquisition from text, there are others well-known in 



literature, for instance, LEXTER [1], which was built for term acquisition from 
French corpora. In our work, we go beyond term extraction to distinguish several 
kinds of semantic terms through several ontological knowledge categories. The use of 
ontologies for knowledge acquisition from text is discouraged in [5; 8] for domains in 
which changes in expert knowledge is rapid and substantial. However, we believe to 
have shown that our approach can easily be adapted to new requirements. 

The methodology presented in this work can be considered an approach for 
learning domain ontologies, although our purpose is not building a whole ontology 
but acquire ontological components.  In [9], a comparison of ontology learning 
approaches is made. There, three different types of approaches, according to the type 
of ontology to be learnt, are distinguished: natural language ontology, domain 
ontology, and instance ontology. Most of  the techniques for learning domain 
ontologies only generates hierarchies of concepts or use a very reduced set of 
relations whereas our approach is richer in that sense. Moreover, such techniques are 
guided by a human knowledge engineer while our purpose is to generate the 
ontological knowledge automatically (at least in the user mode). 

In [6], an architecture for learning ontologies for the Semantic web is presented. 
Such architecture includes a system for acquiring knowledge from texts. Statistical 
methods are used for proposing new lexical entries, the ontology engineer being in 
charge of making the final decision about the creation of new concepts. Moreover, 
such a system is not only capable of dealing with taxonomic relations but it is also 
capable of discovering different association rules that describe relations between 
concepts. However, not much about the consistency of the ontologies built is also 
done there as the ontologist is free to modify at any stage of the ontology learning 
process. In our approach, by using the properties stated for the semantic relationships 
we ensure to some extent consistency in the expert’s decision while inferences can be 
made through the transitive property, if it is the case for the (semantic) relationship 
under question.  

Concerning further work, some improvements should be made with regard to 
different knowledge entities: (a) relations (i.e., solving situations such as those in 
which no participants appear on either side of the relation; a possible solution might 
be checking whether the concept is directly followed by an attribute; here, we might 
think that it is more likely that the attribute is the second participant and not the 
concept); (b) pronouns (these are not dealt with in this work and would be another 
interesting feature to include).  
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