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Abstract. We consider the robot motion planning problem in the pres-
ence of non-integrable kinematic constraints, known as non-holonomic
constraints. Car-like non-holonomic mobile robots are used for solving
this problem, and several implemented planners are discussed. We claim
that the randomized methods are more capable of efficiently solving
many challenging, high-dimensional problems. Results with randomized
planners are very promising to extend our work applying kinodynamic
motion planning.

1 Introduction

Ever since Laumond’s pioneering in 1986 [1], a lot of research works have ad-
dressed motion planning for non-holonomic systems in general and car-like ve-
hicles in particular (see [2] for a recent and extensive review on this topic).

From a kinematic point of view, the main characteristic of wheeled robots (for
instance, car-like robots) is the non-holonomic rolling without slipping constraint
of the wheels on the floor, which forces the vehicle to move tangentially to its
main axis. This reduction of the set of accessible velocities at each time makes
the motion planning problem particularly difficult. The consequence is that the
standard planning and control algorithms developed for robotic manipulators
without constraints are no more applicable.

Car-like vehicles are archetypal non-holonomic systems: they can only move
forward or backward in a direction perpendicular to the orientation of their
rear wheels axle; besides their turning radius is lower bounded (because of the
mechanical limits on the steering angle).

The paper is organized as follows: In Section 2 we review related work on
motion planning approaches. Section 3 presents the model of the car-like robot.
Section 4 describes two planners based on a two step approach, the Voronoi
diagram-based planner and the potential field-based planner. Randomized ap-
proaches are introduced in Section 5, and two variants of PRM framework are
implemented for solving non-holonomic motion planning problems. Finally in
Section 6 we discuss our results and present future work.
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2 Previous and related work

Non-holonomic motion planning refers to problems in which objects motions
must satisfy non-holonomic constraints. It has attracted considerable interest
in robotics [3], [2]. One approach for non-holonomic planning is to proceed in
two stages [1]. First, one can generate a collision-free path that disregards the
nonholonomic constraints and then transforms the path into an admissible one,
i.e., a path that verifies the non-holonomic constraints.

This two-stage algorithm can be extended in various ways, which are all based
on the idea of successive path transformation, but differ in what transformations
to use and how to perform the transformations. Laumond, Jacobs, Täıx and
Murray developed a two-stage planning strategy for the car-like robots [4]. First
a path is found for the associated holonomic system (obtained by removing the
non-holonomic constraints), and then this initial path is approximated by feasible
path segments. Mirtich and Canny have given a path planner based on following
a non-feasible path (a portion of the skeleton) [5]. They also introduced the
notion of a metric based on shortest paths and the corresponding “Reeds-Shepp
ball”.

Barraquand and Latombe have considered non-holonomic motion planning
from a different point of view; their planner finds a path by performing a sys-
tematic search through the configuration space, using potential fields methods
to guide the search [6]. They find paths for car-like and trailer-like robots (in
presence of obstacles) minimizing the number of maneuvers required, and their
planner is able to generate paths for robots with relatively many degrees of
freedom.

Švestka and Overmars [7] developed a motion planner based on probabilis-
tic learning approch (so-called PRM for the community), this planner works
with two different types of car-like robots: robots which can move both forwards
and backwards, and robots which can only move forwards. Their method first
generates configurations in C-space free (<2 × [0, 2π), and then connects them
using a RTR path local planning method. A RTR path is defined as the con-
catenation of a rotational path, a translational path, and other rotational path.
A randomized strategy that has been used for non-holonomic planning is the
RRT (Rapidly-Exploring Random Tree) approach [8]. Here, the non-holonomic
constraints (e.g., the turning radius) are used to construct a tree of feasible paths
emanating from the starting configuration.

In [9] Ferbach combines the two-stage approach and a so-called variational
approach. It can be used for small-time controllable system. First, a collision-free
path is generated. Then the non-holonomic constraints are introduced progres-
sively.

3 Model of the car-like robot

We consider a Cartesian frame embedded in the plane. The vehicle is located
with the coordinates (x, y) of the reference point, the direction θ is the angle
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between the x-axis and the main axis of the robot (see Fig. 1). The robot is then
completely defined as a point (x, y, θ) in the configuration space <2 × S1.

Fig. 1. Model of a car.

Car-like robot behavior is described by the following differential system:

(Σ)





ẋ = cos θ · u1

ẏ = sin θ · u1

θ̇ = 1
Ru2

(1)

with |u1(t)| = 1 and |u2(t)| ≤ 1, where u1 and u2
R are respectively the linear

and angular velocity of the car. Hence, without loss of generality, we assume
that R = 1. The equations of the system (Σ) relate the derivatives ẋ, ẏ, and
θ̇ and one cannot integrate these relations. Such a differential system expresses
kinematic constraints which characterize the non-holonomic nature of the robot.

3.1 Shortest paths for a car-like robot

The study of the shortest paths for a car-like robot has an history. It has first been
addressed without considering the presence of any obstacle. The pioneering result
has been achieved by Dubins [10] who characterized the shape of the shortest
paths when u1 ≡ 1 (the robot moves always forward). More recently, Reeds and
Shepp have provided a sufficient family of 48 shortest paths for the car-like robot
moving forward and backward (|u1| ≡ 1) [11]. Shortest paths for Dubin’s car are
a finite sequence of at most 3 pieces consisting of straight line segments or arcs
of circle with radius 1. Optimal paths for Reeds&Shepp’s car are constituted by
a finite sequence of at most five elementary pieces which are either straight line
segments or arcs of a circle of radius 1. A comprehensive overview on optimal
trajectories for mobile robots is presented in Souères’s chapter [2].

4 Approximating holonomic paths: a two-stage approach

Everything being in place, we may now define a first non-holonomic motion
planning scheme for small-time controllable systems. It consists in approximating
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a collision-free (holonomic) path by a sequence of collision-free admissible ones.
The algorithm itself is then very simple:

– Step 1: Plan a collision-free path with the geometric path planner. If no
such path exists, the algorithm stops: there is no solution.

– Step 2: Perform subdivisions on the path until all end-points can be linked
to their neighbors by an admissible collision-free path.

A natural question to ask about this path-transformation method is whether
it is always possible to transform a collision-free path into an admissible path that
ensures the non-holonomic constraints. The answer is yes for car-like robots [1].
The convergence of Step 2 is guaranteed as soon as the steering method verifies
the topological property (see Laumond’s chapter in [2] for more details). Then the
completeness of the algorithm only depends on the completeness of the geometric
planner that computes a first collision-free path 1. Next two subsections present
both geometric planners voronoi-based and potential field-based.

4.1 Voronoi diagram-based planner

This geometric planner consists of retracting C-space free (Cfree) into its Voronoi
diagram. This diagram has the interesting property of maximizing the clearance
between the robot and the obstacles. It proceeds as follows:

1. Compute the Voronoi diagram V or(Cfree),
2. Compute the points qs and qg and identify the arcs of V or(Cfree) containing

these two points,
3. Search V or(Cfree) for a sequence of arcs A1, ..., Ap such that qs ∈ A1, qg ∈

Ap and, for all i ∈ [1, p− 1], Ai and Ai+1 share an endpoint,
4. If the search terminates successfully, return qs, qg and the sequence or arcs

connecting them; otherwise return failure.

Step 1 requires O(n log n) time, Step 2 takes O(n) time and Step 3 also takes
O(n) time. Thus the overall time complexity of this algorithm is O(n log n). The
most expensive step is the Step 1, but it depends on Cfree only.

4.2 Potential field-based planner

The planner is based on the systematic use of hierarchical bitmap to represent the
robot workspace. The “distributed representation” makes it possible to define
simple and powerful numeric potential field techniques. The principle of this
approach is to construct collision-avoiding attractive potential fields over the
workspace. Each of these potentials applies to a selected point in the robot,
called a control point, and pull this point toward its goal position among the
obstacles. The workspace potentials are then combined into another potential
1 A complete algorithm is guaranteed to find a collision-free path if one exists; other-

wise it returns failure.
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function defined over the configuration space of the robot. This new potential
attracts the whole robot toward its goal configuration.

Each workspace potential is computed over the bitmap representation of the
workspace (at some resolution) in such a way that it has no other local minimum
than the desired final position of the robot’s control point it applies to. Therefore
it can be regarded as a numeric navigation function. We used the NF1 algorithm
introduced in [12] for computing workspace potential field. NF1 computes the
workspace potential for every control point by using a wavefront technique. The
complexity of NF1 is linear in the number of points of the bitmap description
and constant in the number and shape of the obstacles.

4.3 Experimental results

The basic idea of both algorithms is to generate a path that is feasible with
respect to the curvature and non-holonomic motion constraints by approximat-
ing a first path found by any geometric planner. In order to link intermediate
configurations along the path generated by the geometric planner, we use the
shortest path from the set of shortest feasible paths in the absence of obstacles,
as given by Reeds and Shepp [11]. Additional intermediate configurations are
computed by recursively subdividing the geometric path whenever a collision is
detected along a given feasible subpath. Hence, we start trying to reach the goal
directly from the initial configuration by the shortest feasible path. If this path
intersects an obstacle, the configuration halfway along the solution path of the
holonomic system is used as a subgoal. The problem is thus subdivided into two
subproblems. If, at any point, the minimal length path between subgoals is not
collision-free, then we recursively subdivide the holonomic path. When all of the
necessary subdivisions are completed, the concatenation of all feasible paths will
be collision-free and will respect non-holonomic and curvature constraints.

The Voronoi diagram method computes in a single shot a roadmap that
completely represents the connectivity of the Cfree. However, the method is
limited to low-dimensional C-space. Fig. 2 shows an example using the Voronoi
diagram-based planner, in the left picture the holonomic path is shown, and in
the right one, the feasible non-holonomic path is shown.

A significant drawback of the potential field-based planner is that it induces
paths that typically graze the obstacles in the workspace. However, it is possible
to use a more involved workspace potential function computed by the algorithm
NF2 [12] 2. Fig. 3 presents an example using this planner, left picture shows a
holonomic path and left one the feasible path for the same scene.

One can perform an “optimization” routine to remove extra maneuvers and
reduce the length path. Both planners are implemented in Java and the tests
were performed on an Intel c© Pentium III processor based PC running at 866
Mhz with 128 Mb RAM.

2 The complexity of NF2 is slightly higher than that of NF1.
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Fig. 2. A holonomic path (left picture) is computed for a complicated scene, the right
figure shows the corresponding feasible non-holonomic path.

Fig. 3. In the left figure, a holonomic path in a complicated scene is shown, the right
figure presents its associated feasible path. The workspace is modeled by a grid of
100× 100 pixels.

5 Randomized non-holonomic motion planning

Recent results have been provided by applying a new general paradigm in motion
planning [13]. This approach is splited into two phases: the learning phase and
the query phase. In the learning phase, a probabilistic roadmap is incrementally
constructed in Cfree; this roadmap is a graph where arcs correspond to simple
collision-free paths between the nodes. These simple motions are computed using
a fast local method. In the query phase this roadmap can be used to find paths
between different pairs of configurations.

Such a scheme applies for non-holonomic systems as soon as the local method
is a steering method verifying the topological property. Because of the proba-
bilistic nature of the algorithm it is difficult to analyze it. The algorithm is not
complete. But fortunately for most applications the algorithm is probabilistically
complete, that is, when the running time goes to infinity, the probability that a
solution can be found goes to 1 (assuming a solution exists). Next subsections
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present two variants of PRM-based planners for car-like robots: 1) a classical
PRM, and 2) a lazy PRM.

5.1 A classical PRM planner

A car-like robot has special so-called non-holonomic constraints than restricts its
motion. For example, a car cannot move sideways. Still the configuration space
is 3-dimensional because, given enough space, the car can get in each position
in any orientation. Using a simple straight-line (many PRM planners use this
type of local method) interpolation for the local method no longer leads to valid
paths for the robot. So we need to use a different local method. We use Reeds
& Shepp paths as local method: given two argument configurations a and b, if
the shortest path connecting a to b intersects no obstacle, the method succeeds
and returns this path, otherwise a failure is returned.

5.2 A Lazy PRM approach

A recent PRM variant called the Lazy-PRM has been proposed for the problem
of answering single planning queries efficiently [14], [15]. The goal of this variant
is to minimize the number of collision checks. The algorithm builds a roadmap,
whose nodes are the user-defined start and goal configuration, initially we assume
that all nodes and edges in the roadmap are collision-free, and searches the
roadmap for a shortest path between these configurations. If a collision with
the obstacles occurs, the corresponding nodes and edges are removed from the
roadmap and a new shortest path search procedure is applied, or new nodes and
edges are added to roadmap. The process is repeated until a collision-free path
is found. The resulting planner is sometimes very efficient in comparison to the
original PRM. This presents a shift from the multiple query philosophy of the
original PRM, and returns to the single query philosophy which was used in
earlier planners. The advantage of the Lazy-PRM is that the collision checking
is only performed as needed. Thus, all edges do not have to be collision checked
as in the case of the original PRM.

5.3 Experimental results

The implementation is in Java and the tests were performed on an Intel c©
Pentium III processor based PC running at 866 Mhz with 128 Mb RAM. Fig. 4
shows an example of a scene with narrow passages. We have executed both
variants of PRM using the same scene, this is with the purpose of comparing
the running time of both methods. We remember that classical PRM consumes
certain time of computing during the learning phase, but later in the query phase,
it can resolve multiple queries “instantaneously”. On the other hand, lazy PRM
is a single-query planner, but in addition due to the local method it also uses
certain time in the generation of the graph that unlike classic PRM the time is
smaller (lazy PRM assumes that all paths are collision-free). We see that after
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only 16.72 sec of learning (63 nodes), the path was computed in 0.58 sec. But
lazy PRM used only 50 nodes and the path was found in 0.46 sec. Initially we
use the proposed strategy in [14] for the iterative search and deletion nodes and
edges (e.g., for the lazy PRM approach), but we found it to be less efficient for
our computed examples. We also chose to run the A∗ algorithm only once, and
performed collision detection during the search.

Fig. 4. A car-like robot navigating in narrow corridors.

6 Discussion and future work

Comparing the different results obtained with the planners, we can affirm that
randomized approaches are more adapted to solve problems that contain complex
environments and robots with many degrees of freedom. The resolution of motion
planning problems that involve mobile manipulators will be possible. We believe
the implications of our work put a new twist on the understanding of various
motion planning algorithms. For a perspective, consider the following methods
in light of our work.

– Potential field methods attempt to improve search by using heuristics to es-
cape local minima [12]. For our implementation, the search is even performed
over an implicit grid. Thus, it can be considered as a lazy PRM on a grid
lattice, with A∗ search replaced by the potential field method.

– The basic PRM proposed the use of substantial preprocessing to construct a
roadmap based on random sampling in an attempt to reduce the exponential
number of samples needed for a grid-based approach.

– The lazy PRM provides a kind of missing link between classical grid search
and the basic PRM. The spirit is much like classical search (assuming only
one execution of A∗ algorithm), but occurs over a randomly-generated graph,
instead of an implicitly defined lattice.

Using the PRM framework, one can derive a customizable version. For exam-
ple, solving non-holonomic motion planning problems when the car-like robots
are different turning radii.
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6.1 Towards randomized kinodynamic planning

The primary difficulty with existing techniques is that although they are powerful
for standard motion planning, they do not naturally extend to general problems
that involve differential constraints. The potential field-based planner is effi-
cient for holonomic planning, depends heavily on the choice of a good heuristic
potential function, which could become a daunting task when confronted with
obstacles and differential constraints.

In the PRM approach, a graph is constructed in the configuration space by
generating random configurations and attempting to connect pairs of nearby
configurations with a local method that will connect pairs of configurations. For
planning of holonomic systems or steerable non-holonomic systems, the local
planning step might be efficient; however, in general the connection problem it
can be as difficult as designing a non-linear controller, particularly for compli-
cated non-holonomic and dynamical systems. PRM technique might require the
connections of thousands of configurations or states to find a solution, and if
each connection is akin to a non-linear control problem, it seems impractical for
solving problems with differential constraints. Furthermore, the classical PRM
is designed for multiple queries.

RRT approach [8], offers benefits that are similar to those obtained by suc-
cessful randomized planning methods (for instance, PRM approach) but apply
to a much broader class of problems.

For example, in Fig. 5 is depicted an example for a car-like vehicle under
differential constraints. The basic idea is to use control-theoretic representations,
and incrementally grow a search tree from an initial state by applying control
inputs over short time intervals to reach new states. Each vertex in the tree
represents a state, and each directed edge represents an input that was applied
to reach the new state from a previous state. When a vertex reaches a desired
goal region, an open-loop trajectory from the initial state is represented. We
have used the Motion Strategy Library for this example [8].

Fig. 5. The car can move forward only, and a 2D projection of the RRT is shown.
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One can formulate the kinodynamic problem [16] as motion planning in state
space that has first-order differential constraints and obstacle-based global con-
straints. Kinodynamic planning is treated as a motion planning problem in a
higher dimensional state space, which serves the same role as the configuration
space for basic motion planning. Kinodynamic is a topic of future work and
research.
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