
Local Search Methods for Learning Bayesian

Networks Using a Modified Neighborhood in the

Space of DAGs

L.M. de Campos1, J.M. Fernández-Luna2, and J.M. Puerta3

1 Dpto. de Ciencias de la Computación e I.A.
Universidad de Granada
18071 - Granada, Spain
lci@decsai.ugr.es

2 Dpto. de Informática
Universidad de Jaén
23071 - Jaén, Spain
jmfluna@ujaen.es

3 Dpto. de Informática
Universidad de Castilla-La Mancha

02071 - Albacete, Spain
jpuerta@info-ab.uclm.es

Abstract. The dominant approach for learning Bayesian networks from
data is based on the use of a scoring metric, that evaluates the fitness of
any given candidate network to the data, and a search procedure, that
explores the space of possible solutions. The most efficient methods used
in this context are (Iterated) Local Search algorithms. These methods
use a predefined neighborhood structure that defines the feasible elemen-
tary modifications (local changes) that can be applied to a given solution
in order to get another, potentially better solution. If the search space
is the set of directed acyclic graphs (dags), the usual choices for local
changes are arc addition, arc deletion and arc reversal. In this paper we
propose a new definition of neighborhood in the dag space, which uses a
modified operator for arc reversal. The motivation for this new operator
is the observation that local search algorithms experience problems when
some arcs are wrongly oriented. We exemplify the general usefulness of
our proposal by means of a set of experiments with different metrics and
different local search methods, including Hill-Climbing and Greedy Ran-
domized Adaptive Search Procedure (GRASP), as well as using several
domain problems.

1 Introduction

Bayesian Networks (BNs) are graphical models able to represent and manipulate
efficiently n-dimensional probability distributions [18]. A Bayesian network uses
two components to codify qualitative and quantitative knowledge: (a) A directed
acyclic graph (dag), G = (V , E), where the nodes in V = {X1, X2, . . . , Xn} rep-
resent the random variables from the problem we want to solve, and the topology

of the graph (the arcs in E) encodes conditional (in)dependence relationships
among the variables (by means of the presence or absence of direct connections
between pairs of variables); (b) a set of conditional probability distributions
drawn from the graph structure: For each variable Xi ∈ V we have a family of
conditional probability distributions P (Xi|paG(Xi)), where paG(Xi) represents
any combination of the values of the variables in PaG(Xi), and PaG(Xi) is the
parent set of Xi in G. From these conditional distributions we can recover the
joint distribution over V :

P (X1, X2, . . . , Xn) =

n
∏

i=1

P (Xi|paG(Xi)) (1)

This decomposition of the joint distribution gives rise to important savings in
storage requirements. It also allows, in many cases, to efficiently perform proba-
bilistic inference (propagation), i.e., to compute the posterior probability for any
variable given some evidence about the values of other variables in the graph
[14, 18]: The independences represented in the graph reduce changes in the state
of knowledge to local computations.

Although in the last years the problem of learning or estimating Bayesian
networks from data has received considerable attention, within the community of
researchers into uncertainty in artificial intelligence, it is still an active research
area. The fact that finding optimal BNs from data is, in general, a NP-Hard
problem [7], has motivated the use of heuristic search methods to solve it. The
common approach is to introduce a scoring function, f , that evaluates each
network with respect to the training data, and then to search for the best network
according to this score. Different Bayesian and non-Bayesian scoring metrics can
be used [1, 6, 8, 13, 17]. The alternative approach, constraint-based, is to search
for the network satisfying as much independences present in the data as possible
[10, 21, 19]. Obviously, the decision about which conditional independences are
either true or false is made by means of statistical tests. There also exist hybrid
algorithms that use a combination of these two methods [1, 9, 22].

In this paper we focus on Local Search methods, the most efficient meth-
ods, and that rely on a neighborhood structure that defines the local rules used
to move within the search space. The standard neighborhood in the space of
dags uses the operators of arc addition, arc deletion and arc reversal. The main
contribution of this paper is the proposal of an alternative definition of neighbor-
hood, which may alleviate some problems of premature convergence to a local
optimum due to the difficulty of (locally) improving dags where some arcs are
wrongly oriented. We also propose a new algorithm for learning Bayesian net-
work structures, which uses the GRASP (Greedy Randomized Adaptive Search
Procedure) metaheuristic [12].

The paper is structured as follows: We begin in Section 2 with some prelimi-
naries. In Section 3 we define the proposed neighborhood structure for searching
in the space of dags. Section 4 describes GRASP-BN, a new iterated local search-
based learning algorithm that uses Hill-Climbing and a probabilistic version of
the algorithm B [5]. In Section 5, we analyze the experimental results obtained

by both Hill-Climbing and GRASP-BN (on two different domains, ALARM [3]
and INSURANCE [2], and using two different scoring metrics, K2 [8] and BDeu
[13]), when these algorithms use the standard neighborhood and the proposed al-
ternative. Finally, Section 6 contains the concluding remarks and some proposals
for future research.

2 Local search methods for learning BNs

The problem of learning the structure of a Bayesian network can be stated as
follows: Given a training set D = {v1, . . . ,vm} of instances of V , find the dag
G∗ such that

G∗ = arg max
G∈Gn

f(G : D) (2)

where f(G : D) is a scoring metric measuring the fitness of any candidate dag
G to the dataset D and Gn is the family of all the dags with n nodes.

Local Search (or Hill-Climbing) methods traverse the search space, starting
from an initial solution, by examining only possible local changes at each step,
and applying the one that leads to the greatest improvement in the scoring
metric. The search process terminates when it is blocked at a local optimum (no
local change improves the current solution), although it may be restarted on the
basis of either a random modification of the current optimum (by applying a
number of local transformations), or a new (random) initial solution. The set of
feasible local changes that can be applied to any given solution is determined
by the choice of the neighborhood structure. The effectiveness and efficiency of
a local search procedure depends on several aspects, such as the neighborhood
structure, the fast evaluation of the scoring metric of the neighbors, and the
starting solution itself.

As we have already commented, the usual choices for local changes in the
space of dags are arc addition, arc deletion and arc reversal, avoiding (in the first
and the third case) the inclusion of directed cycles in the graph. Thus, there are
O(n2) possible changes, where n is the number of variables.

An important property of a scoring metric is its decomposability in presence
of full data, i.e, the scoring function can be decomposed in the following way:

f(G : D) =
n

∑

i=1

fD(Xi, PaG(Xi)) (3)

fD(Xi, PaG(Xi))=fD(Xi, PaG(Xi) : Nxi,paG(Xi)) (4)

where Nxi,paG(Xi) are the statistics of the variables Xi and PaG(Xi) in D, i.e,
the number of instances in D that match each possible instantiation of Xi and
Pa(Xi).

The efficiency of the algorithms that search in the space of dags using local
methods is mainly due to the property of decomposition that many metrics ex-
hibit: a procedure that changes one arc at each move can efficiently evaluate the

improvement obtained by this change. Such a procedure can reuse the compu-
tations carried out at previous stages, and only the statistics corresponding to
the variables whose parent set has been modified need to be recomputed.

3 A modified neighborhood structure in the space of dags

By monitoring a typical local search algorithm for learning BNs as it progresses,
we have observed some situations where it gets into troubles. Let us explain
these situations by means of the following example:
Example: Consider the network with four variables displayed in Figure 1(a).
From this network we have generated a database containing 1000 instances of
these variables using logic sampling. The value of the K2 metric for this database
and this network is also shown in the figure. A Hill-Climbing algorithm could
obtain the network in Figure 1(b). None of the possible transformations of this
network, using the classical operators of addition, deletion and reversal of an arc
improves the K2 value (the best neighbors are displayed in Figures 1(c)-(e)), so
that it is a local maximum. ♦

K2(log) = −1063 K2(log) = −1099 K2(log) = −1071

(d)

x0

x2

x1

x3

x0 x1

x2 x3

x0 x1

x2 x3

(e)

K2(log) = −1063

(b)

x0

x2

x1

x3

K2(log) = −1056

(a)

x0

x2

x1

x3

(c)

Fig. 1. Problems with the classical neighborhood when an arc is wrongly directed.

This behavior is common for many local search-based learning algorithms:
When they mistake the direction of some arc connecting two nodes1, then the
algorithms tend to ‘cross’ the parents of these nodes to compensate the wrong
orientation; the resultant configuration is quite stable, in the sense that no local
transformation produces a better network and, therefore, it may be difficult to
scape from this local maximum. In the previous example, the wrong orientation
of the arc linking the variables X2 and X3 is the cause of the problem.

A possible solution for this problem could be to carry out the search process
in a different space. For example, we could use the space of equivalence classes
of dags, to postpone the decisions about the direction of the links until we have
more information. Recently, the possibility of searching in the dag space, but
including some characteristics relative to equivalence classes of dags, has been

1 This situation may be quite frequent at early stages of the search process.

considered [15]. This method uses an operator, called RCAR (Repeated Covered
Arc Reversal), which iteratively inverts a prefixed (random) number of covered

arcs2. Then, a Hill-Climbing algorithm is fired to obtain a new local maximum,
and the whole process is iterated a fixed number of times. We are going to follow
a different approach, by modifying the neighborhood structure, i.e., changing
the classical operators used to move in the space of dags.

The classical neighborhood of a dag G is N (G) = NA(G)∪ND(G)∪NR(G),
being NA(G), ND(G) and NR(G) the links subsets for added, deleted and in-
verted respectively. Our proposal implies to modify the reversal operator and,
therefore, the redefinition of the neighborhood NR(G)

The new definition of NR(G) states that, for any given arc Xj → Xi in G, if
its extreme nodes share some parent, then we delete the current parents of both
nodes, invert the arc and add, as the new parents for each node, any subset of
the old parents of either node. The idea is to give the algorithm the opportunity
of ‘uncrossing’ the parents of two nodes which have been connected in the wrong
direction, without being limited to move only one arc every time, for example
the dags (a) in the figure 1 could be a dag neighbor of the graph (b).

Note that, for any arc Xj → Xi ∈ G, the number of possible ‘reversals’ is
now O(22p), with p = |PaG(Xi)∪PaG(Xj)| − 1, instead of only one. Therefore,
the number of neighbors of a dag may increase exponentially. Nevertheless, in
practice the number of parents of a node is not usually high, so we expect that
the computational cost will not be excessive3. In any case we could limit the car-
dinality of the new parent sets (which is a common practice for other algorithms
[8, 16]). Note also that, although the new reversal operator may change more
than one arc, the number of parent sets that are modified is still two, hence we
only have to recompute two statistics to evaluate the corresponding neighbor.

4 A Grasp-based learning algorithm

GRASP [20] is a multi-start or iterative metaheuristic in which each iteration
consists basically of two phases: construction and local search. The construction
phase builds a feasible solution, whose neighborhood is investigated until a local
optimum is found during the local search phase. The best overall solution is
kept as the result. In this section we develop an algorithm for learning Bayesian
network structures using GRASP, which will be called GRASP-BN.

A general GRASP algorithm works as follows: At each iteration of the con-
struction phase, a solution is built using a greedy randomized process: it in-
corporates elements to the partial solution under construction from a restricted
candidate list (RCL). The elements in this list are selected from all the feasi-
ble candidate elements according to a greedy evaluation function. The element
to be incorporated into the partial solution is randomly selected from those in
the RCL. Once the selected element is incorporated to the partial solution, the

2 An arc Xj → Xi in a dag G is covered if PaG(Xi) = PaG(Xj) ∪ {Xj}. A covered
arc may be inverted and the resultant dag is equivalent to G.

3 Our experiments in the next section support this assertion.

candidate list is updated and their elements are reevaluated. When a solution
is finally obtained, the second phase fires a local search algorithm starting from
this solution. These two phases are repeated a given number of iterations.

Our GRASP-BN algorithm will use, in its second phase, a Hill-Climbing (HC)
search in the space of dags, for some neighborhood structure and some metric f .
For the first phase, we are going to create a randomized version of the algorithm
B [5].

Algorithm B is a greedy search heuristics. It starts with an empty dag G and
at each step it adds the arc with the maximum increase in the (decomposable)
scoring metric f , avoiding the inclusion of directed cycles in the graph. The algo-
rithm stops when adding any valid arc does not increase the value of the metric.
The gain obtained by inserting a feasible arc Xj → Xi in G can be evaluated ef-
ficiently by means of the difference fD(Xi, PaG(Xi)∪{Xj})−fD(Xi, PaG(Xi)).
At each step, after inserting in G the best valid arc, Xj → Xi, the algorithm
identifies and discards the new unfeasible arcs by searching for the ancestors
and descendants of Xi. After that, as the value fD(Xi, PaG(Xi)) has been mod-
ified, the algorithm recomputes the new values of fD(Xi, PaG(Xi) ∪ {Xk}) −
fD(Xi, PaG(Xi)) for any valid arc Xk → Xi.

The probabilistic version of this algorithm that we propose is the following:
instead of always selecting the best arc, we will use a stochastic decision rule
that selects the best arc with probability p0, and with probability 1 − p0 each
arc Xj → Xi in the restricted candidate list RCL (that will contain all the
feasible candidate arcs which produce an improvement) will be selected with a
probability p(Xj → Xi) proportional to its merit:

{

arg max
Xj→Xi∈RCL

{fD(Xi,PaG(Xi)∪{Xj})−fD(Xi,PaG(Xi))},u≤p0

Xl→Xr , u>p0

(5)

where u is a random number uniformly distributed in [0, 1], p0 is the parame-
ter that determines the relative importance of exploitation versus exploration,
and Xl → Xr is an arc in RCL randomly selected according to the following
probabilities:

p(Xl→Xr)=
fD(Xr ,PaG(Xr)∪{Xl})−fD(Xr ,PaG(Xr))

∑

Xj→Xi
fD(Xi,PaG(Xi)∪{Xj})−fD(Xi,PaG(Xi))

(6)

We have to remark that this probabilistic version of the algorithm B could also be
used at the initialization stages of other stochastic search algorithms (as Genetic
Algorithms, Estimation of Distribution Algorithms and Ant Colonies).

5 Experimental results

In this section we will evaluate experimentally the usefulness of the proposed
neighborhood, as well as the GRASP-BN algorithm. We have selected two test
domains: ALARM [3] and INSURANCE [2]. For ALARM we have used the first
3,000 cases of the classical ALARM database (which contains 20,000 cases). For

INSURANCE, we have generated three databases with 10,000 cases each by
means of probabilistic logic sampling (in this case we show the average of the
results obtained for the three databases).

In our experiments we have used two decomposable metrics: K2 [8] and BDeu
[13, 5] (both in logarithmic version). For BDeu, we use an equivalent sample size
equal to 1. We have implemented two versions of a Hill-Climbing algorithm, using
the classical definition of neighborhood (HCc) and the proposed modification
(HCm). The initial solution of the search process is the empty network in all the
cases. Experiments with other two forms of initialization (the networks obtained
by the algorithms K2SN [11] and PC [21]) were also carried out, obtaining results
similar to the ones displayed for the empty network. The GRASP-BN algorithm
has also been implemented using the two neighborhood structures (GRASP-BNc
and GRASP-BNm). The parameter determining the number of iterations has
been fixed to 15, and the one to trade-off between exploration and exploitation
is p0 = 0.8.

The following performance measures have been computed: (1) Measures of
quality (effectiveness) of the learned network: (K2) and (BDeu) the value of the
corresponding metric for the best network found by the algorithm; the number of
arcs added (A), deleted (D) and inverted (I) when we compare the learned net-
work with the true network. (2) Measures of efficiency of the algorithm: (EstEv)
the number of different statistics evaluated during the execution of the algo-
rithm; (TEst) the total number of statistics used by the algorithm. Note that
this number can be considerably greater than EstEv. By using hashing tech-
niques we can store and efficiently retrieve any statistics previously calculated,
so that it is not necessary to recompute them. This avoids many accesses to the
database and improves the efficiency; (NVars) the average number of variables
that intervene in the computed statistics.

The results obtained by HCc and HCm using the K2 and BDeu metrics are
shown in Table 1.

Table 1. Results of HCc and HCm using the K2 and BDeu metrics.

ALARM INSURANCE
HCc HCm HCc HCm

K2 -14425.62 -14414.55 -57998.10 -57934.61
A 6 4 10.33 7.67
D 4 2 11.67 11.00
I 3 2 7.67 7.67
EstEv 3375 3336 2050 2169
TEst 1.54E+05 1.56E+05 7.66E+04 8.32E+04
NVars 2.99 2.93 3.09 3.08

HCc HCm HCc HCm
BDeu -33109.47 -33109.47 -133393.03 -133326.27
A 3 3 7.67 7.00
D 2 2 10.00 10.00
I 2 2 10.00 10.67
EstEv 3300 3284 1995 2100
TEst 1.47E+05 1.49E+05 7.15E+04 8.80E+04
NVars 2.88 2.87 2.99 3.04

The results of the experiments with the algorithms GRASP-BNc and GRASP-
BNm is shown in Table 2 for the ALARM domain, and in Table 3 for the IN-
SURANCE domain. In all the cases, the displayed values represent the averages
and the standard deviations of 10 executions of each algorithm. We also give
information about the best individuals found in all the executions.

Table 2. Results of GRASP-BNc and GRASP-BNm for ALARM, using the K2 and
BDeu metrics.

GRASP-BNc GRASP-BNm
µ σ Best µ σ Best

K2 -14429.92 18.51 -14414.55 -14404.23 2.52 -14401.91
A 7.20 2.44 4 2.80 1.55 1
D 2.70 0.95 2 1.10 0.32 1
I 4.30 2.54 2 1.20 1.03 0
EstEv 13306 1228 13148 1061
TEst 5.83E+05 8.85E+03 9.09E+05 9.12E+04
NVars 4.01 0.05 3.93 0.08

µ σ Best µ σ Best
BDeu -33190.14 10.17 -33165.90 -33105.05 4.24 -33101.14
A 5.50 1.18 6 1.40 0.97 1
D 2.00 0.00 2 1.30 0.48 1
I 4.50 0.85 3 1.00 1.41 0
EstEv 12317 759 12769 735
TEst 5.56E+05 5.23E+04 8.80E+05 6.00E+04
NVars 3.87 0.07 3.85 0.03

Table 3. Results of GRASP-BNc and GRASP-BNm for INSURANCE, using the K2
and BDeu metrics.

GRASP-BNc GRASP-BNm
µ σ Best µ σ Best

K2 -57950.53 53.29 -57857.90 -57835.23 30.30 -57779.41
A 10.63 2.11 7 4.57 2.36 4
D 12.27 1.01 10 9.40 1.19 9
I 8.90 3.53 2 3.13 2.34 2
EstEv 7702 626 9135 840
TEst 2.41E+05 2.74E+04 6.45E+05 9.34E+04
NVars 3.98 0.06 3.97 0.06

µ σ Best µ σ Best
BDeu -133143.92 165.52 -132814.06 -132763.92 100.64 -132592,25
A 6.60 1.92 3 2.23 1.28 0
D 9.97 1.79 7 8.07 0.91 8
I 7.43 2.61 7 2.87 1.96 1
EstEv 7768 923 9011 1095
TEst 2.54E+05 3.85+04 6.62E+05 1.61E+05
NVars 3.87 0.09 3.88 0.08

We can see that, in all the cases, the results obtained by an algorithm when
it uses the new definition of neighborhood are considerably better than the ones
offered by the same algorithm using the classical neighborhood4, in terms of
effectiveness (with respect to both the value of the metric5 and the number of
erroneous arcs). For comparative purposes, the respective K2 and BDeu val-

4 Except in one case, where we obtain the same results.
5 Note that we are using log versions of the metrics, so that the differences are much

greater in a non-logarithmic scale.

ues of the true networks for the corresponding databases are −14412.69 and
−33113.83 for ALARM, and −58120.95 and −133160.47 for INSURANCE. The
corresponding values for the empty networks, which may serve as a kind of scale,
are −26008.08 and −59889.80 for ALARM, and −93593.76 and −215514.96 for
INSURANCE.

With respect to the efficiency of the algorithms, we are going to focus in
the number of different statistics evaluated (EstEv) and the number of variables
involved (Nvars): Most of the running time of a scoring-based learning algorithm
is spent in the evaluation of statistics from the database, and this time increases
exponentially with the number of variables. So, an approximate measure of the

time complexity of an algorithm is EstEv ∗ 2NVars. We can observe that the
values of NVars are almost identical and the values of EstEv are not sensibly
different for the two versions of each algorithm: The values of EstEv in the
ALARM domain are even lower when we use the new neighborhood, whereas
the opposite is true for INSURANCE. The total number of statistics used is
systematically larger with the new neighborhood, even considerably larger in
some cases, but as we have already commented, using hashing techniques we can
access very quickly to previously computed statistics, so that the time required
to compute new statistics dominates completely. Therefore, the running times
of the algorithms using the two neighborhoods are comparable.

These results increase our confidence in the usefulness and applicability of
the proposed neighborhood for any learning algorithm that searches locally in
the space of dags, no matter which metric or which type of local search is used.

The comparison between HC and GRASP is favorable to the later (except
in the case of using the classical neighborhood with ALARM), at the expense
of increasing the running times. Particularly, GRASP-BN equipped with the
new neighborhood structure offers excellent results. Moreover, the low standard
deviations obtained in this case are noteworthy, indicating that this algorithm
seems to be quite stable.

6 Concluding remarks

In this paper we have proposed a new definition of neighborhood for the space of
directed acyclic graphs, which copes with the problems that local search-based
learning algorithms encounter when some arcs are wrongly oriented. Our experi-
ments, carried out with different metrics, databases and local search techniques,
support the conclusion that the new neighborhood structure improves the per-
formance of the algorithms systematically, without significantly increasing their
complexity.

We have also developed another learning algorithm, based on the GRASP
metaheuristic, that uses a probabilistic version of the algorithm B in the con-
struction phase, to initialize the local search phase. This algorithm, in conjunc-
tion with the new neighborhood structure, obtained excellent results in our ex-
periments.

For future research, in addition to carry out a more systematic experimenta-
tion and comparative analysis, we also plan to study several variants of the new
operator for arc reversal (e.g., using the intersection of the parent sets in place
of their union or applying the operator only to covered arcs).
Acknowledgements

This work has been supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa
(MCYT) under projects TIC2001-2973-CO5-01 and TIC2001-2973-CO5-05.

References

1. S. Acid and L.M. de Campos. A hybrid methodology for learning belief networks: Benedict.
International Journal of Approximate Reasoning, 27(3):235–262, 2001.

2. J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden
variables. Machine Learning, 29(2):213-244, 1997.

3. I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The ALARM monitoring system:
A case study with two probabilistic inference techniques for belief networks. In Proceedings of
the Second European Conference on Artificial Intelligence in Medicine, 247–256, 1989.

4. R.R. Bouckaert. Bayesian Belief Networks: From Construction to Inference. PhD. Thesis,
University of Utrecht, 1995.

5. W. Buntine. Theory refinement of Bayesian networks. In Proceedings of the Seventh Conference
on Uncertainty in Artificial Intelligence, 52–60, 1991.

6. W. Buntine. A guide to the literature on learning probabilistic networks from data. IEEE

Transactions on Knowledge and Data Engineering, 8:195–210, 1996.
7. D.M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks is NP-Complete.

In D. Fisher and H. Lenz, Eds., Learning from Data: Artificial Intelligence and Statistics V,
Springer-Verlag, 121–130, 1996.

8. G.F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9(4):309–348, 1992.

9. D. Dash and M. Druzdel. A hybrid anytime algorithm for the construction of causal models
from sparse data. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, 142–149, 1999.

10. L.M. de Campos and J.F. Huete. A new approach for learning belief networks using indepen-
dence criteria. International Journal of Approximate Reasoning, 24:11–37, 2000.

11. L.M. de Campos and J.M. Puerta. Stochastic local search algorithms for learning belief net-
works: Searching in the space of orderings. Lecture Notes in Artificial Intelligence, 2143:228–
239, 2001.

12. T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6:109–133, 1995.

13. D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20:197–244, 1995.

14. F.V. Jensen. An Introduction to Bayesian Networks. UCL Press, 1996.
15. T. Kocka and R. Castelo. Improved learning of Bayesian networks. In Proceedings of the

Seventeenth Conference on Uncertainty in Artificial Intelligence, 269–276, 2001.
16. P. Larrañaga, M. Poza, Y. Yurramendi, R. Murga, and C. Kuijpers. Structure learning of

Bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(9):912–926, 1996.

17. W. Lam and F. Bacchus. Learning Bayesian belief networks. An approach based on the MDL
principle. Computational Intelligence, 10(4):269–293, 1994.

18. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, 1988.

19. J. Pearl and T.S. Verma. Equivalence and synthesis of causal models. In Proceedings of the

Sixth Conference on Uncertainty in Artificial Intelligence, 220–227, 1990.
20. M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover

and G. Kochenberger, Eds., State of the Art Handbook in Metaheuristics, Kluwer. To appear.
21. P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Lecture Notes

in Statistics 81, Springer Verlag, 1993.
22. M. Singh and M. Valtorta. Construction of Bayesian network structures from data: A brief

survey and an efficient algorithm. International Journal of Approximate Reasoning, 12:111–
131, 1995.

