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Abstract. In this paper we present a Monte Carlo localization algo-
rithm that exploits 3D information obtained by a trinocular stereo cam-
era. First, we obtain a 3D map by estimating the optimal transformations
between two consecutive views of the environment through the minimiza-
tion of an energy function. Then, we use a particle-filter algorithm for
addressing the localization in the map. For that purpose we define the
likelihood of each sample as depending not only on the compatibility of
its 3D percetion with that of the observation, but also depending on its
compatibility in terms of visual appearance. Our experimental results
show the success of the algorithm both in easy and quite ambiguous
settings, and they also show the speed-up in convergence when visual
appearance is added to depth information.

1 Introduction

Current approaches to solve the problem of localizing a robot with respect to a
map that approximately describes the environment are widely based on sonar
sensors [1] [2].Such a map is usually build from an occupation grid [3], that is, a
bidimensional grid in which each cell contains the probability that its associated
space is occupied by an obstacle. In order to obtain such a grid one needs to
know robot’s motion (odometry), but this information becomes more and more
uncertain as the robot moves. Current techniques, like [2], relying on the EM
algorithm [4] attempt to deal with such uncertainty and in most cases these
approaches, like Monte Carlo methods [6] or bootstrap filters [7] are particular
cases of the so called particle filters.

How to translate the latter approaches to deal with 3D maps? Moravec de-
fined in [8] a method to build a 3D occupation grid (3D evidence grid) from
several stereoscopic views and outlined the benefits of such research in other
robotic problems like path planning and navigation. Current efforts in this area
follow different directions. On one hand it is attempted to obtain the geomet-
ric primitives that describe the map through the Hough transform [9]: aligning
these primitives and conveniently mapping their texture it is possible to build a
poligonal model. On the other hand, stereo is exploited to build 2D long-range
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sensors [10], that is only the Z component is considered. Other researchers use
3D information to build a topological map with landmarks like 3D corners [11].
In other works long-range laser scanners are used to obtain point clouds of the
environment [14] [15].

In this contribution we exploit the mapping method presented in [12] to
build a 3D occupation grid from a set of stereo views of the environment and
we address the adaptation of particle filters to solve the task of localizing the
robot with respect to that grid. As we also code appearance information in
the grid it is possible to evaluate the contribution of visual appearance to the
localization tasks. The paper is organized as follows. Section 2 describes the
approach followed to obtain the 3D map. In section 3 we outline the elements
of the Bayesian approach (posterior, likelihood) and present our particle-filter
algorithm. In section 4 we show four representative experiments. Finally, section
5 contains our conclusions and future works.

Fig. 1. Digiclops camera and Pioneer mobile robot.

2 3D Maps of the environment

2.1 Observations and actions

Our observations are taken by a Digiclops trinocular stereo camera, with a reso-
lution of 640x480 pixels and a frame rate of 14fps, mounted on a Pioneer mobile
robot (see Figure 1). An observation vt performed at instant t consists of kt

points of the 3D environment. For each one we register both their three spatial
coordinates and their local appearance (grey level) in the left image (reference
image):

vt = {p1, p2, ...pkt
}, pi = (xi, yi, zi, ci). (1)

Assuming a flat ground and also that the camera is always normal to the
ground plane, its allowed motions are constrained to: translation along the X
axis (horizontal), translation along the Z axis (depth) and rotation with respect
to Y axis (vertical). Thus, robot’s pose ϕt at instant t is defined by its coordinates
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(x, z) in the XZ plane and the rotation α around Y, whereas a given robot action
at is defined by the increments with respect to the previous pose:

ϕt = (xt, zt, αt), at = (∆xt,∆zt,∆αt). (2)

Then, a robot trajectory (exploration) is defined by a sequence of t − 1
actions, that is At−1 = {a1, a2, . . . , at−1} and t associated observations V t =
{v1, v2, . . . , vt}.

2.2 Composing the 3D map

The 3D mapping process of a given environment consists of registering a set of
observations V t along a trajectory At−1. In order to integrate all the observations
in the same 3D map we assume that the robot’s initial pose, and thus the origin
of the coordinate system of the map, is ϕ1 = (0, 0, 0). As this pose is associated
to observation v1, to map any observation vk of the trajectory we need to know
its pose, which may be obtained by accumulating all previous actions: ϕk =∑k−1

i=1 ai. Once the pose ϕk = (xk, zk, αk) is estimated we multiply all points in
vk by the matrix 3:

Tϕk
=


cos(−αk) 0 sin(−αk) xk

0 1 0 0
− sin(−αk) 0 cos(−αk) zk

0 0 0 1

 (3)

Integrating all observations over the same geometric space we obtain a first
approximation to the map of the environment composed by a high-density 3D
point cloud. This cloud is post-processed to remove replicated points (consider
that each observation may produce 11,000 points) and also to discard outliers.
Our map model is a geometric version of the Moravec’s model [8].

We divide the bounding box of the point cloud L = {p1, p2, . . . pm} in a
3D grid of voxels of constant size Tc (length of each edge of the cube). For each
voxel enclosing a number of points greater than Uc we take a prototype (average)
resulting a 3D matrix E in which we store the prototypes of each voxel in the
grid.

In Figure 2 we show a map of our department. After integrating 187 ob-
servations we obtain a point cloud of 2,294,666 points. Setting Tc = 8cm and
Tc = 15cm we obtain two maps of 25,637 and 19,809 prototypes respectively. In
both cases Uc = 3. As stereo errors are not correlated in time, the integration
process yields noise-free maps.

2.3 Action estimation

Action estimation is key both for map building and localization. Thus, we apply
the energy minimization method described in [12]. Such a method searches the
action that minimizes a given distance between two clouds of 3D points. Here, we
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Fig. 2. Example of a map of our department. Left: point cloud after integrating all
observations. Right: two maps with different thresholds.

highlight such a distance. Given the observations vk and vk+1, and the unknown
action ak, we define ṽk and ṽk+1 as the observations mapped respectively to ϕk =∑k−1

i=1 ai and ϕk+1 = ϕk + ak. Action ak is the one that minimizes D(ṽk, ṽk+1),
a distance D(va, vb) between two clouds of points va y vb defined as follows:

D(va, vb) =
∑Ka

i=1Dpp(pi, P (pi, vb))
Ka

, (4)

where pi ∈ va and P (pi, vb) is the closest point to pi in vb, that is:

P (pi, vb) = arg min
pm∈vb

‖(xi, yi, zi)− (xm, ym, zm)‖. (5)

Finally, Dpp(pa, pb) is the distance in terms of 3D coordinates and image
appearance between points pa and pb:

Dpp(pa, pb) = ‖(xa, ya, za)− (xb, yb, zb)‖+ γ|ca − cb|, (6)

being γ a penalization constant defined so that both terms lie in the same
range.

Given the latter distance, minimization is performed through Simulated An-
nealing [13] properly initialized: In order to reduce the number of iterations
required to converge, we tend to start to search from the previous action. More-
over, as the cost of evaluating the distance is quadratic with the number of
points we use a reduced version of the original clouds: We divide each depth
image in cells of constant size and then we choose a prototype of each cell. The
prototype is de disparity value dC that minimizes de sum of differences between
the disparities of the cell C = {d1, d2, . . . dn}:
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dC = arg min
d∈C

N∑
i=1

|d− di| (7)

For instance, in Figure 3, we show the original 640x480 image, its associated
depth image with 47,202 valid points, and the reduced 160x120 depth image
with 1,520 valid points, assuming cells of 4x4 pixels.

Fig. 3. Obtaining reduced views for action estimation.

In this work, the action estimation is a local process, that is prone to early
erroneous estimations. We are currently investigating in globally consistent ap-
proaches.

3 Localization in the 3D map

3.1 Posterior term

Given a 3D map M obtained as explained in the latter section, we have adapted
the CONDENSATION (CONDitional DENSity propagATION) filter proposed
in [5] to the task of obtaining a sample-based estimation of the posterior proba-
bility density function p(ϕt|V t, At−1) that measures the probability of the cur-
rent pose ϕt given the sequence of observations V t = {v1, v2 . . . vt} and actions
At−1 = {a1, a2 . . . at−1} performed over M .

3.2 Likelihood term

The CONDENSATION algorithm consists of estimating the latter posterior
through a sampling process. Each sample represents a localization/pose hypoth-
esis ϕi, and we denote its likelihood given an observation vj by p(ϕi|vj).

Given the distance between the observation vj , mapped in the pose hypoth-
esis ϕi, and the map M , that is D(ṽj ,M), the likehood of such a pose is defined
as the exponential expression:

p(ϕi|vj) = e−
D(ṽj ,M)

σ2 (8)
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3.3 The CONDENSATION algorithm

The CONDENSATION algorithm encodes the current posterior probabilityof a
pose p(ϕt|V t, At−1) given t observations V t = {v1, v2 . . . vt} and t − 1 actions
At−1 = {a1, a2 . . . at−1} as a set ofN samples (ϕ1, ϕ2 . . . ϕN ) and their associated
probabilities (ω1, ω2, . . . ωN ) attending to their likelihoods.

Initially the samples set is chosen attending to the prior distribution p(ϕ0).
Then, the iteration associated to instant t consists of three steps: (1) compute
the predicted pose of each sample given action at−1; (2) update the probabilities
of each sample given the new pose and the current observation vt; (3) build a
new set considering the latter probabilities:

CONDENSATION Algorithm
Input: Mt−1 = {(ϕ1

t−1, ω
1
t−1), (ϕ

2
t−1, ω

2
t−1), . . . (ϕ

N
t−1, ω

N
t−1)}

Output: Mt = {(ϕ1
t , ω

1
t ), (ϕ2

t , ω
2
t ), . . . (ϕN

t , ω
N
t )}

1. Prediction: given action at−1 the predicted pose for
each sample ϕi

t−1 ∈Mt−1 is given by

ϕ̆i
t = ϕi

t−1 + at−1 + ε, i = 1, 2, . . . N

where ε = (N(0, σx), N(0, σz), N(0, σα)).

2. Update: Given the observation vt the new probabil-
ity ω̆i

t for each sample ϕ̆i
t ∈ M̆t is given by

ω̆i
t = p(ϕ̆i

t|vt), i = 1, 2, . . . N .

3. Resampling: build a new set of N samples resam-
pling (with substitution) the set M̆t in such a way
that each sample ϕ̆i

t is chosen with a probability pro-
portional to ω̆i

t:

(ϕi
t, ω

i
t)← Sample from M̆t, i = 1, 2, . . . N .

Then normalize the probabilities ωi
t of the samples

in Mt to satisfy
∑N

i−1 ω
i
t = 1, that is

ωi
t ←

ωi
t∑N

j=1
ωj

t

, i = 1, 2, . . . N

Robot localization is seen as an iterative process along step-by-step explo-
ration. Assuming that N is high enough to capture the true location of the robot,
the algorithm tends to concentrate all samples around that location as the robot
moves around following, in this case, a first-order Markov chain over the action
space. We consider that the algorithm has converged when the dispersion ψ(Mt)
is below a give threshold Ud and the highest probability max(ωi

t) is greater than
another threshold Uv (to deal with situations in which the initial sample is too
sparse). We define dispersion ψ(Mt) in terms of the averaged distance between
the 2D coordinates of all pairs of samples in the set Mt:

ψ(Mt) =
∑

ϕi∈Mt

∑
ϕj∈Mt

‖(xi
t, z

i
t)− (xj

t , z
j
t )‖

N2
(9)
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3.4 Process optimization

The bottleneck of the algorithm is the computation of the likelihood function
for all the samples in the set. More precisely, the estimation of the closest pro-
totype to each transformed point. In order to reduce the computation load, we
build offline an extended map Ê in which each voxel stores the coordinates of
the closer prototype (non-void cell) in the 3D matrix that registers M . Being
pm = (xm, ym, zm, 0) the minimal coordinates of all points in the map, the cell
(ia, ja, ka) in M associated to any point pa is given by:

M(ia, ja, ka) = (bxa − xm

Tc
c, bya − ym

Tc
c, bza − zm

Tc
c) (10)

M may be transformed into Ê though registering the closer prototype among
its direct neighbors and then propagate such computation for each of them until
all the space is covered. Then at each (i, j, k) we will have the closest prototype
to the center pc(i, j, k) = (xm + iTc + Tc

2 , ym + jTc + Tc

2 , zm + kTc + Tc

2 ) of that
cell:

Ê(i, j, k) = arg min
pr∈M

‖(xr, yr, zr)− pc(i, j, k)‖. (11)

In Figure 4 we show a 2D sketch corresponding to four of the 79 iterations
needed to extend the map in Figure 2 using Tc = 15cm and Uc = 3.

Fig. 4. Growing process for obtaining Ê.

4 Experiments and validation

In this section we will show our five most representative experiments addressed
to validate the method. In all cases we use the map in Figure 2 with Tc = 15cm
and Uc = 3.

Experiment 1: First of all, the robot explores a unambiguous part of the
environment (the top right corner). Using 1500 samples for pose estimation, at
the 7th iteration, ϕ∗ = (2.01m,−17.94m, 276.70◦) is the sample with highest
probability, being the real pose of the robot ϕr = (2.05m,−17.97m, 277.66◦).
Each iteration consumes an averaged time of 2.55 secs in a Pentiun III 900Mhz.In
Figure 5 we show several iterations of this experiment.
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Fig. 5. Experiment 1: First 6 iterations of CONDENSATION (from left to right and
from top to bottom) over a easy part. The arrow indicates the actual robot’s position.

Experiment 2: Now, the robot explores an ambiguous part of the environ-
ment (the long corridor on the right). In Figure 6 we show several iterations of
this experiment and in Figure 7 the evolution of the samples dispersion. We also
are using 1500 samples for pose estimation. In the 9th iteration the sample with
highest probability is ϕ∗ = (1.17m,−10.18m, 193.70◦) being the real pose of the
robot ϕr = (1.14m,−10.21m, 193.78◦).

Fig. 6. Experiment 2: Iterations 1,2,3,4,5 y 9 of CONDENSATION (from left to right
and from top to bottom) over an ambiguous trajectory.

Experiment 3: In order to evaluate the contribution of visual appearance
we have repeated the latter experiment without considering that component
(γ = 0). This results are in a lower convergence rate. Such a rate is even lower
when we also discard the Y component (Figure 7).
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Fig. 7. Experiment 3: Evolution of the convergence rate for the complete algorithm,
without appearance and without the Y component.

Experiment 4: In this case our purpose is to analyze the stability of the al-
gorithm with respect to the number of samples considered. We repeat the second
experiment but using only 500 samples, and the result is shown in Figure 8. The
samples are finally clustered in an incorrect position, revealing the dependence
of the approach on the number of samples.

Fig. 8. Experiment 4: Iterations 1, 5 and 10 of the CONDENSATION algorithm with
only 500 samples.

5 Conclusions and future work

In this paper we have adapted the CONDENSATION algorithm to the task
of localizing a robot in a 3D map build by means of a stereo camera. We have
designed a geometric map that encodes both 3D and appearance information and
we have developed an auxiliar structure that contributes to reduce the temporal
complexity of sampling. In our experiments we have evaluate the performance
of the approach in real situations in which the map does not necessarily coincide
with the environment and real perceptions may contain significant differences
with respect to the data stored in the map.
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Given this results, we are investigating both the definition and consideration
of 3D landmarks and the use of more elaborated information of appearance like
PCA or ICA models.
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de caracteŕısticas en robots móviles mediante muestreo de la densidad a poste-
riori. I Congrés Catal d’Intel.ligncia Artificial. Tarragona, Octubre de 1998.

8. H.P. Moravec: Robot spatial perception by stereoscopic vision and 3D evidence
grids. TR The Robotics Institute Carnegie Mellon University. Pittsburgh, Penn-
sylvania, 1996.

9. L. Iocchi, K. Konolige, M. Bajracharya: Visually realistic mapping of planar
environment with stereo. Seventh International Symposium on Experimental
Robotics (ISER’2000). Hawaii 2000.

10. D. Murray, J. Little: Using real-time stereo vision for mobile robot navigation.
Computer Vision And Pattern Recognition (CVPR’98). Santa Barbara CA, June
1998.

11. S. Se, D. Lowe, J. Little: Vision-based mobile robot localization and mapping
using scale-invariant features. IEEE International Conference on Robotics and
Automation. Seoul, Korea May 2001.

12. J.M. Sáez, F. Escolano, E. Hernández: Reconstrucción de mapas 3D a partir
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