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Abstract.  Determining most relevant attributes and their input order is crucial 
in decision trees and instance-based methods for supervised learning. We 
present a new algorithm to identify and rank relevant attributes for the 
prediction model. Attribute values are projected into a one-dimensional space 
of equal width intervals. Restricted class frequencies are used as criterion to 
determine the degree of attribute relevance. Additionally, we show that 
increasing interval size helps to reduce the problem size. This low complexity 
algorithm shows a 4% increase in predictive accuracy when attributes are 
ordered using this technique for the same classification tool. 

1 Introduction 

Two well-known problems arise when using decision tree structures and instance-
based algorithms for supervised learning. First, the attribute’s input order determines 
heavily the predicting skills of the algorithm. Choosing the wrong order of attributes 
could move values apart in the hyperspace that otherwise would be closer.  

Secondly, some attributes contribute more than others in building the prediction 
hypothesis [2], and attributes considered irrelevant increases the computational cost 
and can mislead distance metrics calculations [13]. This is particularly true for nearest 
neighbour algorithms [7]. Based on these, attributes are classified as relevant or 
irrelevant, in terms of their degree of contribution to the classification model[14, 15]1. 

Intuitively, one wants to set first in the input order, attributes with larger 
discriminatory power with respect to classes, as done for instance with some rule 
induction algorithms [22, 6, 7, 23].  

The complexity of feature selection algorithms depends on the number and quality 
of its attributes. Searching relevant attributes cannot be exhaustive in many cases. The 
dimension of datasets is exponential in the number of attributes. Hence, verifying 
every other combination of attributes is, in many cases, out of the question [17].  

In this paper, we present a low computational and simple empirical algorithm for 
the supervised learning task in order to a) establish a criterion to decide which 
attributes are relevant. b) Which should be the best attribute input order for 

                                                        
1 These authors still identify redundant attributes, a situation which we do not address here. 
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processing. c) How to reduce the number of intervals when discretization2 is used. 
The overall goal is to diminish the classification algorithm's complexity as well as 
increasing or at least preserving its predictive skills.   

2 Overview of the classification algorithm 

We have previously developed an algorithm for supervised learning based on 
instances and the nearest neighbour paradigm [25]. For that purpose, we build a 
permanent multi-way tree (or “trie”) to store discretized training patterns of the type  
P = <p1, p2, pi, pn, c> where pi is a previously discretized attribute value and c its 
class. Tree growth is done branching sequentially using each pi value. 

Classification is done extracting first from the tree two nearest patterns with 
respect to the unknown instance. Branching for pattern extraction is done at each node 
applying a normalized Euclidean distance. After distance comparison, the small one is 
chosen as the new pi element. If distances are equidistant, frequencies are used as 
weight to break any ties. Next, the algorithm analyses the characteristics of all three 
patterns. It checks for the presence of exclusive and semi exclusive values; it also 
measures pattern strength and frequency. In datasets with a clear class bias 
distribution, a majority class parameter is also used. The class from the selected 
pattern is assigned to the new unseen instance. 

3 Basic definitions 

Let us consider the closed universe formed by a training data file composed of a finite 
set of records r. Each record is formed by a finite sequential set of attributes Ai, 
belonging to set S. Every attribute Ai ∈ S can take vi values belonging to a set Ti, called 
the domain value. Additionally, every record can be associated with classes c1, c2,..,ck, 
belonging to a set L, where k is th e number of existing classes in the whole dataset. 
Hence, each record r is formed by the Cartesian product of attributes represented by 
the pair attribute/value and a class label c, such that: 

r =  <v1, v2,.., vi,.., vn, c >  vi ∈ Ti, c ∈ L .    (1) 

Using function ordi, we convert every attribute value vi ∈ r into pattern pi to form 
pattern p as a sequence formed by n values. Every pi value will fit into one of si 

partitions belonging to attribute Ai:  

p = <p1, p2,.., pi,.., pn > p ∈ {1..S}, pi = ordi(vi) ; pi = {1..si} . (2) 

Notice that the number of partitions si is not the same for all attributes3.  
We define functions pat(r) and label( r) such that 

                                                        
2 See Section 6 

3 This is due to changes in the number of partitions for selected attributes as we show later in section 6.   
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                        pat(v) = p, if pi = ordi(vi) . 

label(r) = c, if r =  <v1, v2,.., vn, c> . (3) 

In every pattern p from equation (2) we can find n sub-patterns qi, which can be 
viewed as the prefix portion of pattern p  

qi  = <p1, p2,.., pi >, qi a subsequence of p, i = {1..i} . (4) 

We define function freq, which returns the number of records with pattern p.   

freq (p) = {r ∈ R pat(v) = p} if r = <v, c> .      (5) 

We can also apply this function to sub-patterns obtaining parameter λ: 

                   λi = freq (qi), the frequency of sub-patterns qi. (6) 

Every pattern p has a given label4 c. We define function labels (p), which return the 
set of labels associate to the subset of records with pattern p. 

labels (p) = {c ∈ L ∃ r ∈ RT • label(r) } ; c = {1..k}.  (7) 

The number of labels attached to a given pattern p is given by next function:   

            nlabels(p) = labels(p) . (8) 

We can extend this concept to sub-patterns q as follows: 

(nlq) i  = nlabels (qi)  .     (9) 

4 Ordering attributes 

In general, our method ranks attributes by its capacity of predicting classes without 
taking into consideration other attributes from the original sequence. We postulate 
that this capacity increase, when for a given interval an attribute shows a larger 
frequency of values fully or predominantly associated with one class.  
Our objective is to find the most discriminative attributes from the point of view of 
usefulness to the predictor, with the purpose of improving its prediction accuracy 
[12]. This heuristic criterion has been used successfully before. [18]  

The basic assumption of our classification algorithm is that each pattern p is 
uniquely associated with one label c in the entire dataset. On the other hand, sub-
patterns can be associated with more than one label. Short sub-patterns relating to 
only one class represent homogeneous regions within the data hyperspace. In contrast, 
sub-patterns requiring more attributes to become associated with one class represent 
areas of larger entropy with respect to class distribution. If a new instance to be 
classified falls into one homogeneous class region, its chances of correct classification 
increase. Most of its neighbours will share the same label. For this reason, one would 
like to be able to look at the entire data space nℜ  from the viewpoint of attributes 
where more of these disjoint class areas are “visible”. These are areas where short 
                                                        
4  In this article we use indistinctively the words label or class and attribute or feature. 



Patricio Serendero, Miguel Toro 

sub-patterns are fully or predominantly distinctive of at least one class.  The shortest 
sub-pattern of this type is the one formed by one attribute. This corresponds to 
consider a single attribute as independent from the influence of all others in the 
dataset. We say that attributes that allow this type of view are more relevant than 
others. This idea is similar to editing by ordered orthographic projections of disjoint 
class regions [24]. 

In order to identify which attributes are relevant, let’s first define the concepts of 
exclusive and semi-exclusive interval values within a given attribute partition. 

Function ordi define the interval Iij ∈ Ti belonging to attribute Ai as: 

Iij = {x ∈Ti | ordi(x) = j } . (10) 

Let be Sij the set of records belonging to attribute Ai whose values fall into the 
interval Iij. 

Sij = {r | vi ∈ Iij}. (11) 

Interval Sij is exclusive if all registers within interval j share the same class. It is 
semi-exclusive if the percentage of registers for a given class c within interval j is 
equal or greater than a user-defined limit ö, which corresponds to class support in 
local class probabilistic models [19]. Thus, Sij (c) is the set of patterns in Sij with class 
label c. More precisely, functions exclusive and semi-exclusive can be defined as: 

|)||)(((|)( ijijij ScScIex =•∃⇔  ; ϕϕ ≥•∃⇔ ||/|)(|)( , ijijij ScScIsemex  . (12) 

Using both previous definitions we can define now the strength of an Attribute as: 
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Notice that when ϕ = 1 function ex(Iij) = semex(Iij,ö). For both, exclusive and 
semi-exclusive cases, larger ä values means attributes that are more relevant. The 
opposite means irrelevant attributes. Based on this, our method orders all attributes by 
its decreasing degree of relevance. Fig. 1 illustrates an example of projections. 

 
Attribute: Clump Thickness  

 
Attribute: Uniformity of Cell Size 

Sij 0 1 2 3 4 5 6 7 8 9 total ä 
ëj 227 23 35 17 17 14 12 13 5 45 408 

Class * * * * 4 4 * 4 * 4 89 
89/408 
=0.218 

Note: An asterisk means more than one class exists for that partition; i.e. nlabels (pi) > 1 
          Shadow areas represent frequencies for exclusive interval values (all corresponding to class 4). 

Fig. 1. Attribute projection and strength calculation in a one-dimensional space. Cancer dataset 

 

Sij 0 1 2 3 4 5 6 7 8 9 total ä 
ëj 77 32 62 49 79 20 12 23 11 43 408 

Class  * * * * * * * * 4 4 54 
54/408 
=0.132 
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For each attribute in the dataset, the algorithm projects all training values into a 
one-dimensional space previously partitioned into equal width intervals. It then 
calculates the attribute’s ä value considering exclusive intervals first. For instance, in 
the Cancer dataset, most relevant attribute is “Bland Chromatin” (ä1 = 0.257) and 
worse is attribute “Single Epithelial Cell Size” (ä9 = 0.039). Next, the computed ä 
values are ranked in decreasing order obtaining list ß, which represents all attributes 
ordered by their degree of relevance 

                ß = < ä1, ä2,..,äi,...,än >  |  {än > ä (n+1)} . (14) 

Attributes where äi = 0, are pushed in their original order to the end of the list. If 
the number of positive ä values in list ß are less than some minimum, say n , then for 
all attributes where äi = 0, new complimentary äi’ values are calculated using now 
semi-exclusive interval values. A second list is created out of the remaining attributes 
using semi-exclusive intervals with a user-defined value for ö. Last, a final list is 
produced concatenating both previous lists, with the elements from the exclusive 
values list in first place. Elements within each sub-list are ranked by their ä value; all 
remaining attributes come afterwards.  See the example of the Pendigits dataset next. 

Table 1. Final attribute list formed by different types of intervals in Pendigits dataset 

 

 

 

5 Selection and Ranking of Attributes 

The selection of attributes becomes an easy task after we have determined which 
attributes are relevant and which are not. Irrelevant attributes are eliminated, thus 
reducing the algorithm’s complexity. But this reduction cannot be done without a 
cost. The trade-off is done at the expense of losing predictive accuracy. For this 
reason our goal is to find a minimum subset of attributes S’ such that when the 
classification algorithm is applied we can obtain a new predictive accuracy P´: 

                S’ <= S, that satisfied P’ <= P + å  .     (15) 

The new set S’ obtained by list ß from (14) includes only relevant attributes, and 
discard all irrelevant ones as it happens with attributes 11 till 16 in Table 1. The 
classification algorithm rebuilds the tree as well as other parameters. At running time, 
and using some user-accepted error å, say 4% over the existing prediction value P, a 
new P’ value is obtained. If this value is within the established restriction by equation 

Interval types Attribute Nº Frequency 
Exclusive A4  45 

 A2  26 
 A14    7 

Semi-exclusive A6 284 
      (ö = 75%) A12 132 

 A16   43 
 A10    5 

Irrelevant A11- A16    0 
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(15), then S’ is adopted as the new set of attributes to be used. Otherwise, the 
selection algorithm described in section 4 will be run again reducing the class 
probabilistic threshold value ö. The new goal is to increase the number of elements in 
list â and consequently the number of attributes in subset S’. See Table 4 for results 
on attribute reduction.  

The actual selection algorithm not only discriminates the attribute type. All ä 
elements from Equation (14) are ranked in decreasing order according with their 
value, such that most relevant attributes can be processed first. Therefore, ranking 
attributes is a net requirement of the selection process. 

6 Increasing Attribute Intervals 

Different data attributes can have a different domain space due to the fact of having 
different data types. Because our classification algorithm and the ordering of 
attributes are based in a nominal feature space, all attributes are first discretized. We 
show first the method used for discretization. Next, we argue that in some cases 
increasing interval sizes reduce tree dimension and can improve predictive accuracy.  

Discretization is the process of transforming the domain of a continuous attribute 
or feature into a finite number of intervals [15]. We use the Equal Interval Width 
single feature discretization method [9] without taking into account domain specific 
information [1]. Each partition within domain Ti is divided into si equal sized user-
defined intervals (si > 0)5

, where Mi and mi are the maximum and minimum values in 
the partition. For attributes represented by numeric values the method computes the 
value of interval z is calculated as: 
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For categorical domain attributes, ordi(vi) = pi, where pi is the order number for vi. 

Some of the reasons for using discretization other than our own algorithmic 
requirement are its simplicity and a lower computational cost. To partially avoid the 
loss of information produced by discretization, we keep class distribution information 
in a separate file, which is used at classification time. 

Increasing the size of numeric intervals means considering larger and larger areas 
in the nth dimensional space. Besides the beneficial effect of decreasing tree size and 
computational cost as well as diminishing the effect of noisy data, we are interested in 
maintaining or increasing prediction accuracy as well.  Look at the empty interval 3 in  
Fig.2. After increasing the interval size we apply the principle of continuity6 to 
patterns and their classes. 
 

                                                        
5 In the actual implementation this information is stored into a dictionary file.  
6 The principle states that if, from the nature of a particular problem, a certain number of 

solutions are expected, then there will be the same number of solutions in all cases, even 
including imaginary solutions. 
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Fig. 2. Increasing interval size in one-dimension projection using classes A and B. 
In case (a) the existing interval was doubled. Case (b), z is further increased using exclusive 
values. Case (c) is the same as (b) but using semi-exclusive values 

Some algorithms set interval boundaries on the basis of information gain criterion 
[23], class information entropy [11] or equal-frequency intervals [15] among others. 
In our case, we use heuristics to increase the size of interval values based on the 
predictive accuracy of the algorithm. After each interval modification, the 
classification algorithm is run again to verify if an increase in prediction has occurred. 

7 Results 

We have tested these techniques on seven datasets from the UCI repository [23]. All 
records with unknown attribute values were eliminated. In datasets: Forest covert, 
Adult and Pendigits, we used the given number of records for training and test. In all 
others we ran the algorithm ten times, randomly splitting the full dataset every time in 
60% for training and 40% for test records. Accuracy results are shown next.  
 
Table 2. Predictive accuracy with new attribute order using original interval size 

 Datasets Accuracy (%) Variation 
Nº records. Nº Num. 

Attrib 
Nome 

training test 
New Attribute Order 

(Negrita when relevant) 
 Original  Ordered  % 

1 13 Adult 28,468 15,060  11,12,6,10,1,13,2,3,4,5,7,8,9 68.7 72.7 +4.0 

2 12 Forest covert 15,120 565,892  1,10,5,6,4,12,8,7,9,3,11,2 71.8 74.3 +2.5 

3 10 Cancer–W. 407 273  7,2,1,8,3,9,4,6,5 94.5 95.2 +0.7 

4 24 Hypothyroid 1598 1063 
 18,23,21,1,20,22,7,5,13,24,19,17,16,15,14,12, 
 11,10,9,8,6,4,3 

97.2 99.2 +2.0 

5 33 Dermatology 218 140  20,22,27,29,6,12,8,25,33,34,24,15,10,31,26,30, 
 14,23,7, 32,28,21,19,18,17,16,13,11,9,5,4,3,2,1 

65.7 73.6 +7.9 

6 8 Diabetes 462 306  5,6,2,7,4,8,3,1 65.4 71.9 +6.5 

7  16 Pendigits 7494 3498  4,2,14,6,12,16,10,1,3,5,7,8,9,11,13,15(1) 53.4 58.4 +5.0 

Average variation due to attributes ordering +4.1 

(1) Using semi-exclusive values with ö = 75% 
 
 There is a low correlation between the number of attributes per dataset and the 

observed increases in Table 2. This is no surprise; the original attribute order done by 

Atribute Intervals  1 2 3 4 5 6 7 8 
Class distribution A A Nil A B B B A 

(a) Interval increased 
twice 

A A B * 

(b) Further increase 
using exclusive values 

A * 

(c) Increase using semi 
exclusives at 75% 

A B 
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creators follows a criterion not equal in all cases. Moreover, the proportion of relevant 
and irrelevant attributes on each dataset is not equal. 

Table 3. Variation in accuracy due to interval size increases. Using ordered sets 

(*) Most attributes are categorical. Therefore, is not possible to increase intervals. 
 

Observed increases in Table 3 are similar to results obtained in datasets reported in 
a previous article where this technique was applied [25]. As expected, better results 
appear in datasets with numerical attributes. Dermatology and Hypothyroid datasets 
have mostly categorical attributes difficult to order, and hence the effect is minimum. 
In the Adult dataset, we have ordered some of the categorical attributes values making 
possible to increase interval sizes.  

The explanation for these results could be better understood by looking at the 
example in Fig. 2. The new resulting interval size in (a) reinforces the assumption that 
when applying a distance metric, its value will relate to class A. Even more important 
is the effect on intervals 5 to 8 in the same example. Increasing interval size as in (c), 
and applying semi-exclusive values with ö= 75% simplifies label distribution to only 
two. Additionally, if exist “outliers” in the original interval nº 8, their negative effect 
would be eliminated altogether.  

Table 4. Change in accuracy after reducing the number of attributes. Using ordered sets 

Nº Dataset Number of attributes Accuracy test set 
(%) 

Variation 

 Name Original Reduced Ordered Reduced % 
1  Adult 13 6 78.9 89.8    +10.9 
2  Forest covert 12 5 75.4 76.1 +0.7 
3  Cancer-W   9 4 97.8 98.2 +0.4 
4 Hypothyroid 24 10 99.3 98.9 -0.4 
5 Dermatology 33 19 73.6 80.2 +6.6 
6  Diabetes 8 6 75.8 74.5  -1.3 
7 Pendigits 16 11 85.8 83.0  -2.8 

 
Decreasing the number of intervals can also have a strong impact in the 

algorithm’s complexity by decreasing the search tree size. For instance, increasing the 
interval size for Adult and Cancer datasets using the figures from Table 2 decreases 
tree size of around 20% and 37% respectively. 

Interval increase cannot be applied to categorical data that do not resist any 
ordering.  The Dermatology dataset is an example of this as indicated in Table 3. 

Accuracy (%) Nº Dataset New Interval Max value 
Original Increased  

Variation 
(%) 

1 Adult A1,A13,A4,A7 = 2; A11=10;A10=500 72.7 78.9 +6.2 
2 Forest covert A1=3;A10=20; A5=2; A6=20; A4=10 74.3 75.4 +1.1 
3 Cancer –W. A2 – A10 = 2 95.2 97.8 +2.6 
4 Hypothyroid A18=0.15; A23, A21, A1=2 99.2 99.3 +0.1 
5 Dermatology No changes possible (*) 73.6 73.6   0.0 
6 Diabetes A2=3; A5=3; A7=0.020; A6=0.10 71.9 77.8 +6.9 
7 Pendigits A1–A13=22; A14=12; A15–A16=2; 58.4 85.8   +27.4 
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The largest absolute increases in Table 4 were observed in datasets nº 1 and 5. This 
is probably due to the presence of more irrelevant attributes in the original attribute 
set, eliminated afterwards. The decrease in the Diabetes dataset is explained by the 
fact that we eliminated 25% of relevant attributes as indicated in Table 2. The 
reduction in accuracy in Pendigits is counter-balanced by a significant reduction in 
tree size and hence, in search time. The small variation in accuracy observed in 
datasets 2, 3, and 4 is done at the expense of a reduction over 50% in the number of 
attributes. Finally, although out of the scope of this article and as a reference of our 
classification algorithm, we compare its results with Quinlan’s landmark tool C4.5. 

Table 5. Comparing our classifier with the popular C4.5 

 
Nº Dataset Error in accuracy (%) 

  C4.5 Ours 
1 Adult (Census 94,USA) 14.6 10.6 
2 Forest cover 29.1 23.9 
3 Cancer-W 5.8 1.8 
4 Hypothyroid 0.7 0.7 
5 Dermatology 3.9 19.8 
6 Pima Indian Diabetes 26.8 24.2 
7 Pendigits 7.2 14.2 

Source for C4.5 results taken from [5, 16, 20, 21, 23]. 
 
In general, our classifier shows better performance than C4.5 for datasets with 

smaller class distribution and worse when the opposite is true.  

8 Discussion 

In this article we have presented a new attribute selection and ordering method useful 
for algorithms using decision trees and instance-based methods for supervised 
learning. Results from Table 3 show 4% average increase in accuracy for the 
classification algorithm when a new ordered attribute list is used. We have previously 
obtained similar results with other UCI datasets [25]. The basic reason for this is that 
reordering attributes and increasing interval sizes favours the criteria used by the 
classification algorithm. Having more relevant attributes located first in the tree 
hierarchy, favours the parameters used in the hypotheses model. The advantage of this 
algorithm is its simplicity and a polynomial degree of complexity. 

Increasing interval sizes improved the degree of accuracy of the classification 
algorithm in all datasets where numerical attribute types are dominant. This is 
probably due to the fact that many datasets in the real world present some degree of 
natural clustering among its observations, which differs from attribute to attribute as 
well as within intervals themselves.  

There is a trade off between the reduction in the dimension of attributes and the 
precision of the classification algorithm. For shorter sub-patterns means increasing the 
chances of having identical sub-patterns associated with more than one class. This 
situation represents a constraint when reducing dimensionality using this technique.  
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