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Abstract. We propose the use of quasi-random sampling techniques
for motion planning in high dimensional configuration spaces, within
the popular probabilistic roadmap (PRM) framework. We show through
several experiments, some performance advantages of QPRM approach,
in comparison to its randomized counterpart.

1 Introduction

Automated motion planning is rapidly gaining importance in various fields. Orig-
inally the problem was studied in robotics. But in the past few years many new
applications arise in fields such as animation, computer games, virtual environ-
ments and maintenance planning and training in industrial CAD systems.

Motion planning algorithms attempt to find a sequence of actions to move a
system from an initial to a goal configuration. The seminal paper by Schwarthz
and Sharir on the generalized piano mover’s problem sparked a great deal of
research efforts aimed at finding efficient solutions for a wide class of problems
[1].

Many different techniques for motion planning have been devised. See the
book of Latombe [2] for an extensive overview of the situation up to 1991 and
e.g. the proceedings of the yearly IEEE International Conference on Robotics
and Automation for many more recent results.

Over two decades of motion planning research have led to two primary trends.
In 80s, deterministic approaches provided both elegant, complete algorithms for
solving the problem, and also useful approximate or incomplete algorithms. The
curse of dimensionality due to high-dimensional configuration spaces motivated
researchers from the 90s to present time to develop randomized approaches which
are incomplete, but capable of efficiently solving many high-dimensional prob-
lems.

A similar pair of trends occurred many years ago with the Monte Carlo
methods. These trends were followed by a third trend: the development of quasi-
random approaches that use deterministic samples to achieve performance that
is often superior to random sampling. In this paper, the term quasi-random
can be considered synonymous with deterministic; the term exist to emphasize
comparisons with random and pseudo-random concepts. Quasi-random sampling
ideas have improved computational methods in many areas, including numerical
integration, optimization, image processing, and computer graphics [3].
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It is therefore natural to ask: Can quasi-random sampling ideas also improve
motion planning methods designed for high degrees of freedom? Is randomization
really the key to solving high-dimensional problems? We argue in this work
that randomization is not necessarily advantageous in solving high-dimensional
planning problems.

In this paper, we investigate the use of deterministic sampling in the context
of the popular PRM framework developed independently at different sites [4],
[5], [6], [7]. We present implemented, quasi-random variant of the classical PRM
and indicate some advantages over its randomized counterpart.

2 Sampling methods

Deterministic sampling techniques have been developed by numerous mathe-
maticians over the past century. Excellent overviews of the subject include [8],
[3]. A brief treatment, specific to our problem is presented here.

Let X = [0, 1]d ⊂ <d define a space over which to generate samples. Consider
designing a set, P , of N d-dimensional sample points in a way that covers X
uniformly in some sense. In the one-dimensional case, the points may be evenly
spaced in an obvious, uniform way. There are both the challenges of defining
a useful criterion of uniformity and then designing a sample set that attempts
to optimize the criterion. A good criterion should mesure whether the sample
points appear reasonable in various region of X. For example, PRM algorithm
repeatedly tries to connect to samples in a randomly-centered ball in X. It
would be useful if the criterion measures how many samples will fall into these
neighborhoods.

There are a variety of measures that can be used to characterize the nonuni-
formity of the sample points within the hypercube, however, the dominant meth-
ods as referred to as the discrepancy measures of the sample. We define the
discrepancy to measure how far from ideal the point set P as:

DN (P,R) = sup
R∈R

∣∣∣∣
P ∩R

N
− µ(R)

∣∣∣∣ (1)

where µ(R) denotes the Lebesgue measure (or volume) on Xd and the supre-
mum is taken ove all axis-parallel boxes, R.

Whereas discrepancy is based on measure, a metric-based criterion, called
dispersion, can be introduced:

dN (P, ρ) = sup
x∈X

min
p∈P

ρ(x, p) (2)

Above ρ denotes any metric, such as Euclidean distance or `∞. If ρ is a
Euclidean metric, the dispersion yields the radius of the largest empty ball. If
R represents the set of all balls, then DN is at least as large as this volume
because |P ∩ R| = 0. It is kwnon that dN (P, ρ) ≤ DN (P,R)

1
d , in which ρ is

the `∞ metric and R is the set of all axis-aligned rectangular subsets (see [8]).
Hence, low-discrepancy point sets lead to low dispersion.
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For a fixed N , one can use the Sukharev sampling criterion [9] for obtaining
the best possible dispersion that can be obtained for any sample sets.

dN (P ) ≥ 1
2bN 1

d c , (3)

which holds true for any point set P , when dN is the `∞ dispersion. Solving 3
for a prescribed dispersion yields, N ≥ (1/2dN )d, which means that the number
of samples is exponential in dimension.

2.1 Low-discrepancy sequences

Numerous low-discrepancy sample sets have been proposed. The choice of one
set over the others depends on several concerns: 1) the desired range space,
R; 2) theoretical bounds on the discrepancy; 3) the quality of the samples as
observed in applications; and 4) difficulty of constructing the samples. The most
common range space is the set of axis-aligned rectangular subsets, which denote
by Raar. In an appendix of [8], the current upper and lower bounds on the best
possible discrepancy for an open sequence, attainable for different range spaces
are summarized.

The best known upper bound for open sequences and Raar, O( 1
N (log N)d),

is achieved by Halton sequence [10]. The Halton sequence is defined for a d-
dimensional space by using d prime bases to generate a sequence of N quasi-
random numbers as follows:

xn = (Φb1(n), ..., Φbd
(n)), n = 1, 2, ..., N

The radix inverse function Φbj (n) used in the above sequence is defined as:

Φbj (n) = 0.n0n1 · · ·nd = n0b
−1
j + n1b

−2
j + . . . + ndb

−d−1
j =

d∑

i=0

nib
−i−1
j

This finite sum has integer coefficients ni in which 0 ≤ ni < bj and result
from the digit expansion of the integer n in base bj :

n = ndnd−1 · · ·n2n1n0 = n0 + n1bj + n2b
2
j + · · ·ndb

d
j =

d∑

i=0

nib
i
j

In addition, for reference, a second low-discrepancy sequence, the Hammer-
sley sequence [11], can be generated with a minor modification of the Halton
sequence:

xn = (n/N,Φb1(n), ..., Φbd−1(n)), n = 1, 2, ..., N

For the case of d = 2, the Hammersley sequence is often referred to as the
Van der Corput sequence, which was introduced much earlier.
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Fig. 1 compares sample sets in X = [0, 1]× [0, 1] and also shows the Voronoi
diagram of the point set (i.e., in each region the representative sample is the
closest among all samples). Notice that for pseudo-random points there is a
large variation in region size and shape, which illustrates the non-uniformity
of random samples. For Hammersley points, the Voronoi regions appear more
regular, the points are even better because it is closed sample set.

Fig. 1. Shown are 500 pseudo-random and Hammersley points, plus their associated
Voronoi regions.

3 Quasi-random roadmap (QPRM)

We present a brief description of the motion planning problem and the proba-
bilistic roadmap approach. Let W denote a subset of <2 or <3 in which a robot
A is moving. The position of A is described by a configuration q such that the
position of every point on A can be determined relative to a fixed frame in W.
The set of all configurations is called the configuration space and is denoted by
C. For a configuration q ∈ C, A(q) denotes the subset of W occupied by A.

The cardinality of C is generally infinite since the robot is assumed to move
continuously in W. The aim of motion planning is to avoid a set of obstacles O
in W. If A intersects O we say that A collides with the obstacles and Cfree is
the set of collision-free (or feasible) configurations.

Given an initial configuration qs ∈ Cfree and a final configuration qg ∈ Cfree,
we define the motion planning problem as follows: Find a continuous path γ :
[0, 1] → C such that γ(0) = qs, γ(1) = qg and γ(t) ∈ Cfree for all t ∈ [0, 1], or
determine that no such path exists.

The probabilistic roadmap planner, is a relatively new approach to motion
planning. It is a roadmap technique but rather than constructing the roadmap
in a deterministic way, a probabilistic technique is used. A big advantage of
PRM is that its complexity tends to be dependent on the difficulty of the path,
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and much less on the global complexity of the scene or the dimension of the
configuration space.

The global idea of PRM is to pick a collection of (random) configurations in
Cfree. These free configurations form the nodes of a graph G = (V, E). Some
pair of nodes are chosen and a simple local motion planner is used to attempt
connections. When the local planner succeeds, an edge is added to the graph. The
local planner must be very fast, but is allowed to fail on difficult instances. Once a
graph reflects the connectivity of Cfree, it can be used to answer motion planning
queries. To find a motion between a start configuration and a goal configuration,
both are added to the graph using the local planner. Then a path in the graph is
found which correponds to a motion for the robot. In a post-processing step this
path is then smoothed to improve its quality. The pseudo-code for the algorithm
for constructing the graph is shown now.

1. V ← ∅, E ← ∅
2. loop :
3. q ← a (random) configuration in Cfree

4. V ← V ∪ {q}
5. Nc ← a set of nodes chosen from V
6. For all q′ ∈ Nc, in order of increasing distance from q do
7. If q′ and q are not connected in G then
8. If the local planner finds a path between q′ and q then
9. E ← E ∪ {(q′, q)}

The two time-consuming steps in this algorithm are line 3 and 8. The first
generates a free sample and the other tests whether the local method can find a
path between the new sample and a configuration in the graph. The geometric
operations required for these steps dominate the work. To improve the efficiency
of PRM we need to implement these steps very efficiently and we need to avoid
calls to them as much as possible. That is, we need to place samples at “useful
places” and need to compute only “useful edges”. The problem is that it is
not clear how to determine whether a node or edge is “useful”. Many of the
improvements described in [12], [13], [14], [15], [16] works this way.

Our approach in the PRM context is to simply replace the pseudo-random
sample generator that appears in Line 3 of the roadmap generation algorithm
above with a low-discrepancy, deterministic sampling method.

We can visualize the importance of the dispersion to the roadmap by placing
a ball with radius equal to the dispersion at each sample point [17]; the entire
sample space is now covered. Obviously, the fewer of these balls we have, the
smaller our roadmap is (in terms of number of nodes); the smaller these balls
are, the easier it is to connect a query to the roadmap. Of course, other methods
(e.g., [13], [15]) can be used to address the narrow corridor problem; however, it is
interesting to note that better performance can be obtained by merely replacing
pseudo-random samples with deterministic samples. This seems to contradict
the intuition that led to the PRM in the first place.
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It may also be possible to improve the performance of other PRM sampling
techniques [12], [6], [15], [14], [16] by using deterministic replacements for the
samples.

4 Comparing PRM and QPRM experimentally

We have used Halton, Hammersley, and Sobol points as inputs to QPRM algo-
rithms to solve a variety of planning problems in a range of dimensions. QPRM
has performance better than or equal to its PRM counterpart. We have carried
out several experiments with different values of connection radius on environ-
ments with narrow passages.

The time to generate the quasi-random samples in comparison to pseudo-
random samples was never a significant factor. We begin here by exploring the-
oretical comparisons of discrepancy and dispersion from the literature. In the
context of motion planning problems, discrepancy and dispersion are related to
the uniform coverage of C. Dispersion is also a direct measure of the maximum
distance of any query to the roadmap and related to the ability to connect paths
through narrow, twisting passages. Also, connection radii less than the disper-
sion of a point set may produce disconnected roadmap graphs. Next subsections
present the experimental results for both holonomic and car-like robots.

4.1 Holonomic robots

The implementation for holonomic robots is in C++, using The Motion Strategy
Library from the Univ. of Illinois, and the PQP collision package from the Univ.
of North Carolina at Chapel Hill.

The number of nodes required to find a path that travels through the passage
is shown in Table 1 and Table 2 for both QPRM and 50 averaged trials of the
PRM. Fig. 2 shows two 6-dof planning problems. In the left case, the QPRM
solved this problem with 11459 nodes, and the PRM averaged 12063 nodes over
50 trials. In the right case, the problem is solved with 22145 nodes for the QPRM,
and the PRM averaged 25685 nodes over 50 trials.

Fig. 3 shows two planning problems performed on narrow corridors. In the
first case (left picture), the QPRM solved the problem with 258 nodes, and the
PRM averaged 474 nodes over 50 trials. Another case (right picture), QPRM
with 996 nodes and PRM averaged over 50 trials 2843 nodes.

4.2 Car-like robots

The motion planning for car-like robots has received considerable attention in
the past few years [7], [18]. These robots typically have three degrees of freedom,
i.e., two positional dofs and one orientation dof, i.e. (x, y, θ), which are related
through an intrinsic non-holonomic constraint:

ẏ cos θ − ẋ sin θ = 0
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Fig. 2. In the left case, a 6-dof planning problem in which an elbow-shaped robot
passes through two small opening; and in the right case, getting a wrench out of a
cage.

Fig. 3. Two examples of mobile robots in narrow corridors.

Since this equation is not integrable, there are constraints in the tangent
space at each configuration (that is, on the allowable velocities) and these can-
not be eliminated by defining a more restricted configuration space manifold
in which the points can then move in any direction. The main consequence of
this constraint is that an arbitrary path in the admissible configuration space
does not necessarily correspond to a feasible trajectory for the robot. Therefore,
the existence of a collision-free trajectory is not a priori characterized by the
existence of a connected component in the admissible configuration space.

Much research has been done on motion planning for non-holonomic car-like
robots (see [18] for a review). Within PRM framework, Švetska [7] use RTR paths
as local method. An alternative to RTR local method is to use a local method
that constructs the shortest car-like path connecting its argument configurations
([19]). Another strategy that has been used for non-holonomic planning is the
RRT (Rapidly-Exploring Random Trees) approach [20].

The principle of the PRM framework, first, a graph of admissible configu-
rations is built by connecting with a non-holonomic local planner (for instance,
the Reeds & Shepp paths [19]) randomly generated configurations that are ad-
missible and close to each other. Then, for solving any motion planning problem
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Table 1. Performance data for PRM

Prob. dim learning query nodes edges
(sec.) (sec.)

Elbow 6 208.78 0.675 12063 55898
Wrench 6 724.19 2.855 25685 58684
Maze 1 3 13.68 0.010 474 4200
Maze 2 3 157.15 0.185 2843 42698

Table 2. Performance data for QPRM

Prob. dim learning query nodes edges
(sec.) (sec.)

Elbow 6 181.43 0.449 11459 49920
Wrench 6 517.75 1.839 22145 43940
Maze 1 3 3.93 0.010 258 1242
Maze 2 3 41.53 0.020 996 11654

initial and goal configurations are connected to configurations of the graph, and
the graph is explored for a path between these configurations.

Fig. 4 shows two examples of planned paths for car-like robots: the workspace
is modeled by a grid of 150× 250 pixels. The number of nodes required to find
a path that travels through the passage is shown in Table 3 for both QPRM
and 100 averaged trials of the PRM. For the left picture, the QPRM solved the
problem with 65 nodes, and right picture with the PRM averaged 98 nodes over
100 trials using the linear congruential generator.

Fig. 4. Two examples of car-like robots navigating in narrow corridors.



Submitted to Iberamia 2002 9

Table 3. Performance data for both QPRM and PRM

approach learning query nodes collision test local method
(sec.) (sec.) calls calls

QPRM 36.773 0.50 62 397973 1386
PRM 70.652 0.70 98 925385 3381

5 Discussion

Based on our experiments, quasi-random samples appear to offer performance
improvements similar to those observed in other fields where Monte Carlo meth-
ods were replaced with quasi-Monte Carlo methods. Another potential advantage
of quasi-random sampling is that deterministic bounds on the performance of
the planner can be derived.

With random sampling, performance guarantees and completeness are mea-
sured probabilistically [5], [7], [13]. When using deterministic samples, the plan-
ner is guaranteed to terminate in finite time with a solution, if a solution exists.
Deterministic sampling enables the QPRM to be resolution complete, in the
sense that if it possible to solve the query, it will eventually solve it. One can
exploit dispersion bounds to characterize the set of configuration spaces that can
be solved. This characterization is in terms of a parameter that measures the
narrowest corridor width, in a manner similar to that of [21], [13]. Determining
performance bounds remains a topic of further research.

The notion of resolution is comparable to dispersion, which guarantees each
sample is within a prescribed displacement of other samples. The problem is
that for any collection of N d−dimensional points in [0, 1]d, the dispersion, s,
is bounded as s ≥ 1

2N− 1
d [3]. Therefore, an exponential number of samples is

needed to maintain a fixed dispersion or resolution, regardless of whether random
sampling, or quasi-random sampling are used.

Also, it is hard to compare deterministic, predictable methods to randomized
methods, which yield varying results in multiple executions. We speculate that
randomization appearing in other sampling techniques could be safely replaced
and possibly improved with deterministic sampling; however, case-by-case com-
parisons would be necessary.

Derandomization of algorithms can be seen as a part of an effort to map
the power of randomness and explain its role. Randomized algorithms are also
related to probabilistic proofs and constructions in combinatorics by the effort
to replace them by explicit, non-random constructions whenever possible.

A comparison with each variant of the PRM ([12], [14], [15], [16]), using
quasi-random sampling would be interesting, so we propose it as a topic of
future study.
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