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Abstract.Ontology based Component Oriented Architecture (OCOA) is a
software architecture designed for autonomous robotic agents. It is comprised
of four kinds of objects that manage and interchange information with each
other on a distributed peer to peer basis. The central architectura information
service in the agent is the Agent Information Manager (AIM), which is notified
and notifies any capability added, updated, substracted, or failed in the agent.
These capabilities are managed ontologicaly. The architectural knowledge
base is built dynamically by the components of the agent, and al of them can
be searched and found using ontology as resource and information retrieval
mechanism. High level logical data processing services are performed by
Common Framework objects (CFo). CFos aso offer the infrastructure needed
to interchange raw and ontological architectural information. The interface to
physical devices is provided by Devide object Drivers (DoD). DoDs extend
CFo features by incorporating device and platform dependent code wrapped in
Device Input Output Drivers (DIOD). DIODs are Java Native Interface objects,
which operate directly with physical devices. Therefore, OCOA uses these four
kinds of objects (AIM, CFo, DoD and DIOD), giving (by replacing only
DIODs) a scalable, modular, platform neutral, dynamic, ontology based agent
architecture.
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ontologies, JADE.
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1 Introduction

The most succesful robotic software architectures developed can be classified into
three categories [1]: hierarchical, deliverative and hybrid. The main feature of a
hierarchical architecture [2] is to be guided to reach a high level plan by restricting
low-level horizontal communications. This architecture has poor flexibility, so it is
difficult to adapt to modern robots, which have to manage many sensors in reactive
and reflex loops. The deliverative architecture [3] adopts the opposite approach. It
comprises several modules known as behaviours which run concurrently through
communication and through the environment. The design of high level goalsis usualy
difficult to achieve. Hybrid architectures [4] are the most recent. They try to combine
reactive and deliberative control. However, the connection between these two levelsis
generally a difficult task [1].There are several trends in the development of software
that can help to the development of new and powerful robotic architectures.

From Software Engineering there is a recent approach for building software
architectures that reuse off-the-shelf components. This approach is called component
based architectures [5]. Also, there is a growing interest in using ontologies as the
main tool for the development of new and powerful knowledge based systems [9].
OCOA architecture follows these trends by integrating ontology into the core of the
architecture. As far as we know, this is a new approach for designing autonomous
robotic software architectures that may perform dynamic reconfiguration of robotic
system software components. OCOA, writen in Java, is a hybrid robotic software
architecture that uses component based features. This architecture proposes
approachesto:

- Total portability of components among different robotic platforms.

- Dynamic plug/unplug of interdependent behavioral reactive, deliverative and
physical-driver components, even among different physical agents, without loss
of control over the agent.

- Ability to perform, structure and coordinate complex interdependent reactive and
deliverative behaviors.

In order to be able to manage the dynamic adding and removing of components, the
OCOA architecture uses an architectural knowledge base. This architectural
knowledge base is dynamically built by the components of the OCOA architecture.
All its components manages the same ontology which is stored in the AIM. This
component provides the OCOA with a yellow and white pages server, thus any
request for information about services available in OCOA is answered by the AIM.
Logical data processing services are performed by Common Framework objects
(CFo) whilst the interface to physical devices is provided by Device object Drivers
(DoD). DoDs extend CFo features by incorporating device and platform dependent
code wrapped in Device Input Output Drivers (DIOD). DIODs are Java Native
Interface [6] objects, which operate directly with physical devices. Therefore, OCOA
is a scalable (components can be added or removed), modular (component based),
platform neutral (by replacing only DIOD components the rest of the OCOA

! In this context, an ontology is a description (like a formal specification of aprogram) of the
concepts and relationships that can exist for an agent or acommunity of agents [13]



architecture can be used in different robotic hardware architectures), dynamic and
ontology based software agent architecture. Moreover, due to the use of Java Remote
Machine Interface (Java/RMI) [7] [8], each component may be located in a different
Java Virtual Machine, thereforeit also has distributed characteristics.

This paper describes the OCOA architecture and it is organized as follows: section 2
sets out the robotic architecture ontology used by the OCOA architecture. Section 3
describes the components of OCOA: AIM, CFo and DoD. Section 4 show an
overview of the coordination resources that OCOA provides. Section 5 show an
example of a robotic agent that uses OCOA. Section 6 describes some details of
OCOA implementation. Finally, the conclusions are drawn.

2 OCOA Robotic Ontology
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Fig. 1. OCOA architectura ontology

In this section it is set out the ontological representation of the architectural
knowledge base of OCOA. The description includes the properties, features,
attributes and restrictions of each concept. Figure (1) shows the class tree used for
representing the architectural knowledge base.

Theroot of the class tree isthe Agent Information Manager, which has an instance of
the OntologyGraph and an instance of the TaxonomyTree.

The TaxonomyTree contains the name of the taxonomy, and a collection of
Taxonomyltems. Each Taxonomyltem contains the name of the item, the Children
that the item owns (which are instances of Taxonomyltem), the Father of the item
itself (which is, again, an instance of Taxonomyltem), and a link to Ontologyltem
(which is the ontological correspondence of the Taxonomyltem in the knowledge
base).

The OntologyGraph contains the name of the Ontology and a collection of
Ontologyltems. Each Ontologyltem contains the name of the item, a link to
Taxonomyltem (which is its taxonomical hierarchy correspondence), and a collection
of instances of Capabilities.

Each Capability contains the CapabilityName, a collection of Dependencies (which
are instances of Ontologyltem), and information related to the concrete capability
implementation made by the part of a concrete CFo (Method, ParameterClass and
ReturnDataClass). The CFo is comprised of a collection of Capabilities, an



OCOAAddress (which univocdly identifies the comporent in the OCOA agent), and
a series of strings related to the taxonomy branch kept by this CFo in the
TaxonamyTree Device objed Driver has a "is-a” relationship with a Common
Framework objed. This relationship represents that a DoD isa”kind of” CFo. Device
objea Driver contains an EmbebedDIOD, which links DoD to the system library that
can be used to manage physicd devices.

3 Thestructural components of OCOA Architecture

In this sedion the main structural comporents of the OCOA architedure are
explained.

3.1 The Agent Information Manager (AIM)

The Agent Information Manager provides the agent with a white and yellow pages
server. It manages avail able information abou comporents of the agent by using the
architedura knowledge base. Through the registration process a comporent
anources its existence, cgpabiliti es, goals and dependencies to the AIM. Thus, the
AIM incorpotes the comporent in its architedural knowledge base. Capabiliti es,
goals and dependencies are spedfied by the comporent being registered using the
common ontology of the architedure. The taxonamicd information provided by the
comporent can be non existent. Thus, the AIM must include this information as a
new branch dof the taxonamicd tree
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As aresult of this registration process the comporent recevesfrom the AIM its own
OCOA address and all the addresses of its dependent comporents. If any of the
comporent dependences are not available (i.e. not yet registered), the dependence
OCOA addresses will be nat provided. These addresses will be sent when the related
comporents that provide these cgabiliti es are registered in the AIM.



The modular structural description of the AIM is shown in Figure 2. It includes the
architectural knowledge base (which includes taxo-ontological information and
component addresses) and facilities to communicate with other components by
providing methods for performing registration, notifications and requests of
capability explanations.

3.2 The Common Framework Object (CFo)

Common Framework object provides facilities to interchange information with other
agent components: methods to register and unregister to the AIM and methods to
attach listeners and triggers to other OCOA components. Also, the CFo includes its
own timers and watchdogs.

The CFo implements a Listener Manager which accepts and processes new listener
registrations from other components and requests listener registrations to other
components. This Listener Manager processing involves a complete ontological
knowledge of the component to be registered. This knowledge is used to deal with
conflicting external requests.

CFo aso implements a Dependence Manager which manages al dependency
information that this CFo has with other components in the agent.

The Capability Manager performs several tasks in the CFo: 1) it informs theListener
Manager about new registrations to be made to other components; 2) it provides all
necesary information to perform the registration to the AIM; 3) it manages al
communications needed by any capability method; and 4) it is informed of
dependency modifications by theDependence Manager.
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Fig. 3. Modular description of an Extended Common Framework object (ECFo).

The CFo must be extended with capability methods to perform the desired tasks and,
afterwards, must be linked to an onto-taxonomical description of the capabilities that
these methods perform. Figure 3 shows the modular structural description of an
extended CFo component (ECFo).



When a CFo is incorporated into the architedure, the CFo communicae with the
AIM to provide it with its cgpabiliti es and dependencies.

The AIM incorporates the CFo into the general ontology and, as result, the AIM
sends the CFo OCOA address and the addresses of the CFo dependence comporents
to the CFo. With this information, the CFo determines how and when to use the
dependences relating to the tasks to be exeauted. If any of its core dependences are
not avail able, the CFo states inadive until the AIM natifies it of the availability of
thase dependences.

3.3 Device object Driver (DoD)

The Device objed Driver can be shown as an abstradion layer to hide platform
dependant device implementation isses. DoD, besides inheriting al the
functionaliti es of its superclass(the CFo), adds a new objed, the Device Inpu Output
Driver (DIOD). This new objed wraps a link to a plattform dependant driver (a
system library program, usualy written in C), which allows access to physicd,
plattform dependant devices. The DIOD links platform dependant code through Java
Native Interface
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Fig. 4. Moduar Description d an Extended Device objed Driver (EDoD)

The posshiliti es offered byits superclass(the CFo) enable preprocessng o inpu data
signals and revision of the exeaution of commands that interad with the external
world environment. As a result, DoD can carry out explicit trapping of errors that
occur within primitive adion/sense tasks and the subsequent adivation of an
aternative or error-corredion adivity. These readive control posshiliti es that DoD
offers, allow prewired patterns of behavior. DoD may have either eager sensing (i.e.
senses often to update the system’s view of the world) or lazy sensing (i.e. senses by
request of any other comporent of the agent). Both ways can be chosen. This gives
OCOA agents the ability to seledively focus their attention on spedfic aspeds of their
environment. These considerations allow an OCOA agent to operate in red-time
dynamic environments, due to the posshility of exeauting simple readion strategies,



the ladk of an explicit externa world representation, and the readive resporse to
stimuli.

The DoD must be extended with: 1) a platform dependant driver linked to the DIOD,
2) cgpability methods to develop the desired tasks; and 3) link these methods to a
taxo-ontologicd description of the cgpabiliti es. Figure 4 shows the moduar structural
description d an Extended DoD comporent (EDoD).

4 Component coor dination?

In OCOA architedure coexists several comporents. All of them try to accomplish
their job, and ocasdonally will raceto obtain necessary resources. These resources
can be, i.e. complying with DoD sensors, efedors, CFos that expressdifferent levels
of behavior, etc ... Coordination among them is reated by getting semanic
knowledge of the tasks and goals asigned to eadn comporent. This knowledge is
expressed at an ontologicd level, and it is stored in the AIM when the comporent is
registered. Details of tasksto be acomplished are expressed by:

Precondtion(s) to adivate the behavior. These precondtions can be, i.e. a

definite state of the environment.

Postcondtion: State of the agent after the exeaution of a behavior. This can

imply the interchange of messages among dff erent comporents.

Exeaution priority: It has to be set off-line. Some behaviors will require a

higher priority over remainder behaviors( obstale avoidance, panic behavior,

etc..). Remainder behaviors may have an standard priority, and given a

purctual situation, racefor resources.

Exeaution deadtime: It can be an absolute or relative temporal definition, and

in terms of avail able resources or state of the agent.

5 OCOA by example

In figure (5) can be seen an example of the use of OCOA in an autonamous robaic
agent. In the lower side of the figure, we can seethree physicd devices managed by
DIODs, which are embebed in Extended DoD (EDoD) comporents. Each EDoD
manages a DIOD. All EDoDs are interconneded to allow data interchange needed to
perform readive behaviors. Above the EDoDs, a series of Extended CFos (ECFos)
can be seen. These ECFos perform logicd processng o data provided bythe EDoDs;
one of the ECFos uses an EDoD to ded with the movement of the roba. All ECFos
perform deliverative procesing of data (i.e.. map building, spatial and temporal
ressoning, and navigational procesing). The Agent Information Manager manages
architedural knowledge data and, as a future work to be dore, to perform
communicaionwith external agents.

2 In this sedion, though a comporent can run several behaviors, the term “comporent”
(structural), can be fredy interchanged by the term “behavior” (functional).



Figure (6) shows a cronogam representing event registrations, natificaions and
cgpability requests during the exeaution of the OCOA implementation shown in figure
(5). Thefirst adion ead comporent performsisto register itself to the AIM.

After providing their cgpabiliti es and dependences, the AIM provides eat comporent
with its own OCOAAddress and the OCOAAddresses of their dependence
comporents (if avail able).
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Fig. 5. Software comporents and Herarchicd relationshipsin an example agent

Next, the comporents mutually perform a series of registration processs, in order to
append listeners to achieve automatic event natifications. The last series of processes
shown in figure (6) evidences the interadion between the adive comporents in the

agent.

6 OCOA implementation. Ongoing efforts.?

OCOA implementation is being dore using JADE [14] and its framework. According
with JADE phil osophy, every agent runs an unique exeaution threal. By this reason,
every OCOA comporent will be compoundby several JADE agents. Every manager
of OCOA comporents (Listener, Dependence and Capability managers), is being
implemented using a diff erent and separate exeaution thread; and every manager will

be a different JADE agent. Also, every OCOA cagpability will be implemented by a
JADE agent. All OCOA comporents will have common methods for initialize,
register and cleally exit from the system. As further work, an analisys and
comparation with the most relevant robaic software achitedures will be dore.

3 In this sedion, though a comporent can run several behaviors, the term “comporent”
(structural), can be fredy interchanged by the term “behavior” (functional).
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Fig. 6. Cronogram of the execution of the OCOA implementation shown in figure 5. There are
three main stages: register to AIM, register to dependent components and interaction between
components.

7 Conclusion

Several recently published architectures for robotic autonomous agents use
component based theories (i.e. the works of [10] [11] [12]). OCOA main advantages
among other architectures are:

- Portability: the choice of Java as the language to use in this architecture alows
the implementation on a wide variety of target platforms, and OCOA is not tied
to any specific operating system.

- Reusability: CFos perform high level logical processing. Therefore, they can be
reused off-the-shelf in different robotic platforms.

- Dynamic Component Plug-in: through the registration process, capabilities can be
added or substracted dynamically to the system.

- Modularity: The definition of the OCOA architecture isinherently modular.

- Scalability: through the Java/lRMI distributed computation model, nodes can be
attached to the system to add more compute power, and thanks to OCOA thisis
done transparently.

- Fault Tolerance and Security: due to the use of Java/RMI fault tolerance and
security issues are provided.



- Reactive Control Behaviour Patterns: DoD structure provides prewired patterns

of behavior.

- Ability to focus attention on spedfic aspeds of the roba environment: DoDs

provide to perform lazy or eager sensing.

- High leve planning: CFos provide the posshility of performing deliverative

processng.

- Architedural Knowledge Base: The ontology is built dynamicdly with the

comporents. Moreover, the use of ontology provides a way to perform red
dynamic comporent plugin and resolution of al possble coordination and
comporent dependencesin the ayent.

- Ability to perform, structure and coordinate complexinterdependent reactive and

deliverative behaviors.
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